SVEUČILIŠTE U ZAGREBU GEODETSKI FAKULTET

Ivan Topolovec

Analiza položajne točnosti triangulacijske, trilateracijske i kombinirane 2D geodetske mreže posebne namjene

Zagreb, 2010.

Ovaj rad izrađen je na Geodetskom fakultetu, Zavod za geomatiku, Katedra za obradu i analizu geodetskih mjerenja, pod vodstvom prof. dr. sc. Nevia Rožića, dipl. ing. geod. i predan je na natječaj za dodjelu Rektorove nagrade u akademskoj godini 2009/10.

Sadržaj

1. Uvod	1
2. Ciljevi rada	3
3. Tunel Sv. Rok	5
3.1. Geodetska osnova tunela Sv. Rok	6
3.1.1. Stabilizacija točaka mreže	11
3.1.2. Instrumentarij	12
3.1.3 Metode izmjere	14
4. Računska obrada podataka izmjere geodetske mreže tunela Sv. Rok	15
4.1. Primarna računska obrada podataka izmjere	23
4.1.1. Primarna računska obrada pravaca	24
4.1.2. Primarna računska obrada duljina	30
4.2. Računska obrada mikro-triangulacijske mreže	34
4.3. Računska obrada mikro-trilateracijske mreže	42
4.4. Računska obrada mikro-triangulateracijske mreže	48
5. Usporedba i analiza položajne točnosti	55
6. Zaključak	61
Zahvala	64
Literatura:	65
Sažetak	66
Summary	67
Prilog	68
Prilog 1. Podaci izmjere	69
Prilog 2. Trigonometrijski obrazac br.1	77
Prilog 3. Stajališno izjednačenje pravaca	84
Prilog 4. Računanje nesuglasica figurnih uvjeta – pravci	91
Prilog 5. Izjednačenje duljina	96
Prilog 6. Računanje nesuglasica uvjeta horizonta – duljine	
Prilog 7. Izjednačenje mikro-triangulacijske mreže	106
Prilog 8. Izjednačenje mikro-trilateracijske mreže	116
Prilog 9. Izjednačenje mikro-triangulateracijske mreže	122

1. Uvod

Prvu suvremenu definiciju geodezije dao je njemački geodet Helmert 1880. godine, koja geodeziju opisuje kao znanost o izmjeri i prikazu Zemljine površine. Ovu definiciju potrebno je proširiti iz razloga što se geodetska mjerenja obavljaju na fizičkoj površini Zemlje, koja je oblikovana njenim ubrzanjem sile teže. Geodezija je znanost koja se bavi određivanjem oblika i vanjskog polja ubrzanja sile teže Zemlje kao vremenski promjenjivih veličina, geoida, kao i određivanjem srednjeg Zemljinog elipsoida na temelju parametara mjerenih na i van Zemljine fizičke površine (URL 1). Zbog obuhvata raznolikih zadaća, geodezija spada u prirodne znanosti, kada se bavi Zemljom kao planetnim tijelom, odnosno tehničke znanosti, kada se bavi rješavanjem zadaća vezanih uz površinu Zemlje gdje se većinom zanemaruje njena zakrivljenost. Geodezija je zbog praktičnosti i konkretnosti u rješavanju problema i zadaća vezanih uz određivanje položaja diskretnih točaka na njenoj površini (geodetsko pozicioniranje) primjenjiva u mnogim djelatnostima. Građevinarstvo je nezamislivo bez geodetskih radova. Geodetski radovi u građevinarstvu od velikog su značaja u projektiranju, gradnji i korištenju građevinskih objekata. Jedna od osobitih zadaća je uspostava odgovarajuće geodetske osnove za potrebe izvedbe građevinskih objekata, odnosno prijenosa objekata iz projekta u narav.

Geodetska osnova u slučaju "zahtjevnih" i složenih građevinskih objekata uobičajno poprima formu geodetske mreže, koja gledano s geometrijskog stajališta, poprima oblik tri ili više točaka na terenu raspoređenih po unaprijed definiranim pravilima i međusobno vezanih geodetskim mjerenjima. Određivanje položaja (koordinata) točaka na terenu, međusobno vezanih geodetskim mjerenjima, u primjereno definiranom koordinatnom sustavu, naziva se geodetsko pozicioniranje (Novaković 2009). Metode geodetskog pozicioniranja točaka geodetske osnove, odnosno mreža, mogu se podijeliti na terestičke i satelitske. Terestičke metode su: triangulacija (mjere se pravci), trilateracija (mjere se duljine), triangulateracija (mjere se pravci i duljine) (Smith 1997), nivelman (mjere se visinske razlike). Satelitske metode su: GNNS (GPS, CROPOS,..), VLBI, SLR, i dr. Geodetske mreže razlikujemo, osim po vrsti veličina koje su predmet izmjere, obzirom na broj dimenzija koordinatnog sustava u kojem se položaj točaka određuje:

- visinske mreže - jednodimenzionalni koordinatni sustav (1D),

- horizontalne (ravninske) mreže - dvodimenzionalni koordinatni sustav (2D)

1

- prostorne mreže - trodimenzionalni koordinatni sustav (3D).

U posljednje vrijeme, uvode se u primjenu i četiridimenzionalni koordinatni sustavi (4D), gdje je četvrta dimenzija vrijeme.

Sukladno značaju koncepta geodetske mreže, kao temeljnog sredstva za realizaciju složenih i zahtjevnih građevinskih objekata, ovaj rad se bavi računskom obradom i analizom kvalitete kojom je realizirana 2D mikro-geodetska mreža (duljine stranice mreže 300 - 500 m) na sjevernom portalu tunela Sv. Rok. Geodetska mreža je uspostavljena kao temeljna geodetska infrastruktura sa svrhom određivanja pravca bušenja tunela, odnosno određivanja elemenata za proboj tunela u horizontalnom smjeru. Zbog iznimne važnosti postizanja uspješnog proboja posebice su interesantni svi oni elementi njene realizacije koji ukazuju na postignutu kvalitetu pozicioniranja. Iako je navedena mreža uspješno realizirana u varijanti tzv. kombinirane, odnosno triangulateracijske mreže, što je omogućilo uspješan proboj tunela Sv. Rok, od posebnog interesa pokazuje se ispitivanje njene potencijalne realizacije u formi isključivo triangulacijske, odnosno trilateracijske mreže. Obzirom da su neposredni podaci izmjere mreže dostupni, omogućena je računska obrada i izjednačenje mreže u sve tri potencijalno moguće varijante, neovisno od njene izvorne računske obrade, uz usporedbu i analizu postignute položajne točnosti.

2. Ciljevi rada

Cilj ovog rada je usporedba i komparativna analiza položajne točnosti 2D mikromreže izvedene u formi triangulacijske, trilateracijske i triangulateracijske (kombinirane) mreže. Usporedba i analiza položajne točnosti 2D mikro-mreže obavljena je uporabom podataka izmjere geodetske mreže uspostavljene na sjevernom portalu tunela Sv. Rok. Na temelju projekta mreže, geometrijske konfiguracije mreže i plana izmjere, mreža je realizirana neovisnom izmjerom pravaca i duljina (triangulacija i trilateracija). Dostupnost podataka izmjere omogućuje obavljanje pozicioniranja točaka geodetske mreže u tri neovisne varijante:

- matematičkim modeliranjem mreže i računskom obradom mikro-triangulacijske mreže (pravci),

- matematičkim modeliranjem mreže i računskom obradom mikro-trilateracijske mreže (duljine),

 matematičkim modeliranjem mreže i računskom obradom mikro-triangulateracijske mreže (pravci i duljine).

Pri modeliranju i računskoj obradi geodetske osnove potrebno je, zbog ovisnosti pokazatelja kvalitete pozicioniranja o definiciji koordinatnog sustava, usvojiti istu definiciju geodetskog datuma i referentnog koordinatnog sustava. Jedino je u tom slučaju moguće obaviti međusobnu usporedbu i analizu postignutih položajnih točnosti u sve tri varijante, obzirom da je o njima ovisna. Kao inženjerski utemeljeno i pragmatično rješenje, za sve tri varijante, usvojen je 2D Kartezijev koordinatni sustav determiniran tzv. optimalnim datumom.

Položaji točaka geodetske mreže u pripadnom koordinatnom sustavu smatraju se apsolutnim veličinama (položaj u koordinatnom sustavu određen je koordinatama), a relativnim veličinama smatraju se mjerene veličine (pravci i duljine). Upravo su koordinate točaka i njihova točnost, kao i koordinatne razlike, one veličine koje su od primarnog interesa za ispunjenje svrhe i namjene uspostave geodetske mreže (geodetska mreža uspostavlja se zbog određivanja elemenata za proboj tunela). Stoga, u svrhu analize i usporedbe geodetske mreže u sve tri navedene varijante, potrebno je posebnu pozornost usmjeriti prema kriterijima položajne točnosti. Položajna točnost je temeljni element za prosudbu o kvaliteti pozicioniranja geodetske mreže u cjelini, odnosno o kvaliteti pozicioniranja pojedinih točaka mreže. Kriteriji položajne točnosti mogu se podijeliti u dvije temeljne grupe: globalni i lokalni. Kriteriji koji iskazuju

položajnu točnost za sve točke mreže, odnosno cijelu mrežu ili grupu točaka su tzv. globalni kriteriji, dok su kriteriji za svaku pojedinu točku lokalni kriteriji (Rožić 2008). Na temelju rezultata usporedbe i analize položajne točnosti moguće je zaključiti koja varijanta geodetske mreže je najkvalitetnije realizirana u pogledu položajne točnosti (kvaliteta pozicioniranja).

3. Tunel Sv. Rok

Tunel Sv. Rok nalazi se na dionici Sv. Rok – Maslenica, autoceste A1 Zagreb –

Split, sl. 1. Po svojoj dužini ubraja se među najdulje tunele u Republici Hrvatskoj. Dužina tunela iznosi 5670 m. Sjeverni portal (ulaz) nalazi se na nadmorskoj visini od 561 m, a južni portal na 510 m nadmorske visine. Dvije tunelske cijevi međusobno su osno razmaknute 25 m, a širina pojedine cijevi je 9.10 m, dok visina cijevi u najvišoj koti iznosi 6.85 m, sl. 2. Tunel Sv. Rok u cjelosti je hrvatski "proizvod". Izvođač radova sa sjeverne strane tunela bila

je tvrtka Hidroelektra-niskogradnja d.d., Zagreb, a s južne strane Konstruktorinženjering d.d., Split. Zbog različitih uvjeta i objektivnih okolnosti, tijekom iskopa tunela, došlo je do razlike u brzini bušenja (iskopa) tunela s južnog i sjevernog portala. Posljedica navedene činjenice bio je pomak planiranog mjesta proboja tunela, koji je pomaknut nekoliko stotina metara prema sjevernom portalu. Geodetske radove, nadzemnu i podzemnu geodetsku osnovu, obavila je tvrtka Zavod za fotogrametriju

d.d., Zagreb. Tunel Sv. Rok se prema obliku tunelske osi ubraja u tunele u pravcu s krivinama na oba kraja, a iskop tunela izveden je metodom probijanja punog profila (URL 2).

SI. 2. Poprečni presjek istočne cijevi tunela Sv. Rok (URL 2)

3.1. Geodetska osnova tunela Sv. Rok

Geodetska osnova, uspostavljena u svrhu gradnje tunela Sv. Rok, može se podijeliti na: nadzemnu i podzemnu. Uspostava nadzemne geodetske osnove tunela Sv. Rok obavljena je u dvije faze. U I. fazi je obavljena stabilizacija točaka geodetske mreže na sjevernom i južnom portalu te je obavljeno pozicioniranje točaka primjenom GNNS metodologije pozicioniranja. U II. fazi su provedena samo klasična terestička mjerenja (mjerenje duljina i pravaca) kako bi se mogla primjeniti ista metodologija pozicioniranja van i unutar tunelskih cijevi. Prije izmjere u II. fazi radova bilo je potrebno izvršiti prestabilizaciju postojećih točaka i stabilizaciju novih točaka mreže. Naime, dio točaka iz I. faze je građevinskim radovima uništen te se izvorna stabilizacija pokazala nedovoljno kvalitetnom. Uspostavljeno je 6 točaka na južnom portalu i jednako tako 6 točaka na sjevernom portalu, sl. 3. Radikalno otežavajuća okolnost pri uspostavi geodetske osnove bio je miniran i nepristupačan teren, kao posljedica okupacije i ratnih djelovanja u Domovinskom ratu. U II. fazi, povezivanje geodetskih mreža na sjevernom i južnom portalu obavljeno je preciznim poligonometrijskim vlakom preko Velebita (URL 2). Geodetska osnova tunela Sv. Rok prema svojim karakteristikama pripada geodetskim osnovama za posebne namjene (Paar 2006).

Važan element koji direktno utječe na kvalitetu pozicioniranja geodetske mreže, odnosno pozicioniranje geodetskih točaka, je geometrijska konfiguracija mreže. Prilikom projektiranja geodetske mreže potrebno je integrirati osnovne oblike mreža (geodetski četverokut i centralni sustav) da bi se postigla "čvrsta" geometrijska konfiguracija (otpornost na izobličenje). Pri tomu je važno da osnovni oblici mreža poprime što pravilniji oblik (težnja da kutevi i duljine stranica budu podjednaki). Na navedeni način utječe se na postizanje povoljnih presjeka pravaca i duljina u svrhu određivanja položaja točaka. Integriranje osnovnih oblika mreža utječe na broj prekobrojnih mjerenja, što omogućuje kontrolu mjerenja, idetifikaciju grubih pogrešaka (pouzdanost) i izjednačenje mjerenih veličina.

U geodetskoj mreži uspostavljenoj na sjevernom portalu tunela Sv. Rok, sukladno konfiguraciji terena i organizaciji gradilišta, integrirana su oba osnovna oblika mreža (centralni sustav, geodetski četverokut). Točke su međusobno vezane mjerenjima, tako da je realiziran zadovoljavajući broj prekobrojnih mjerenja, što pruža

mogućnost otkrivanja grubih pogrešaka. Duljine između točaka mreže uglavnom ne prelaze tolerantni omjer 1:3 što ukazuje na realizaciju povoljnih presjeka, sl. 4.

SI. 3. Nadzemna geodetska osnova tunela Sv. Rok (URL 2)

Sl. 4. Skica mikro-mreže "Sjeverni portal"

Geometrijska konfiguracija geodetske mreže može se ocjeniti prihvatljivom i primjerenom u svrhu osiguranja visoke kvalitete pozicioniranja točaka, uz uvjet realizacije preciznih i točnih mjerenja. Na sl. 4 vidljivo je da mrežu (II. faza) čini 6 geodetskih točaka, čiji je relativni odnos položaja određen s 13 duljina. U mreži se može razlučiti ukupno 13 trokutova te 2 centralna sustava i 4 geodetska četverokuta. Obzirom da je nakraća duljina približno 170 m i najdulja 1297 m, evidentna je činjenica da mreža spada u mikro-mreže. S gledišta čvrstoće geometrijske konfiguracije najupitnija je točka P5, obzirom na realizaciju presjeka, odnosno činjenica da nije realizirana geometrijska povezanost točke P4 i P5. Treba naglasiti da je na konfiguracija terena. Zbog razvedenosti terena javljaju se velike visinske razlike između pojedinih točaka. Najmanja visinska razlika je između točaka P4 i P11 od približno 1.5 m, dok je najveća približno 106.5 između točaka P2 i 172Z1, tablica 1. Točka 172Z1 je najviša točka u geodetskoj mreži, a točka P2 najniža.

Nadmore	ske visine	visine Visinske razlike		ike
Točka	Н	Sa stajališta	Na stajalište	Δh
	m	Stajansta	Stajansto	m
D1	574 5075	P5	P2	-61.8754
PI	574.5275	P5	P1	-59.9544
D2	572 6072	P5	P11	-49.4766
P2	572.6073	P4	172Z1	95.6412
D4	E92 46E1	P4	P11	1.5265
P4	363.4031	P4	P2	-10.8603
DE	624 4940	P4	P1	-8.9380
РЭ	634.4019	P11	P2	-12.3935
D11	E01 0002	P11	P1	-10.4713
PII	364.9003	P11	172Z1	94.1052
17071	670 4002	P2	172Z1	106.4913
1/221	679.1003	P2	P1	1.9202
		P1	172Z1	104.5742

Tablica 1. Visinske	razlike
---------------------	---------

Naglašene visinske razlike na kratkim udaljenostima mogu nepovoljno utjecati na terestička mjerenja. S jedne strane zbog nedovoljne kvalitete rektificiranosti instrumentarija te zbog specifičnih mikroklimatskih uvjeta potenciranih visinskom razvedenošću i konfiguracijom terena.

Na sl. 5 predočena je geometrijska konfiguracija mreže na topografskoj podlozi, gdje je osim horizontalnih odnosa (situacije) predočena i visinska konfiguracija terena. Sukladno geografskom položaju mreže (Velebit) visinska kofiguracija je razvedena, odnosno velike visinske promjene konfiguracije terena ("otočići") i strmi nagibi uvjetovali su zamjetne visinske razlike između točaka. Nepristupačan teren, uvjetovan strmim nagibima i velikim visinskim razlikama te miniranost, bili su otežavajuća okolnost pri projektiranju, stabilizaciji i izmjeri geodetske mreže na sjevernom portalu tunela Sv. Rok.

Sl. 5. Geometrijska konfiguracija mreže na topografskoj podlozi

Približne koordinate točaka mreže rezultat su I. faze radova, gdje je pozicioniranje točaka obavljeno primjenom GNNS metodologije pozicioniranja. Približne

koordinate točaka određene su u HDKS-u, odnosno u ravnini Gauss-Krugërove projekcije (5. zona), tablica 2.

PRIBLIŽNE KOORDINATE TOČAKA MREŽE				
TOČKA	Y _o m	X _o m		
P11	4500.3600	7699.1900		
P5	5185.6150	6597.8210		
P4	4636.5100	7094.9290		
P2	4422.4210	6868.9060		
P1	4383.2880	7035.2020		
172Z1	3991.9700	7128.9900		

Tablica 2. Približne koordinate točaka mreže

3.1.1. Stabilizacija točaka mreže

Stabilizacija i signalizacija točaka geodetske mreže su jedan od važnih elemenata koji utječe na kvalitetu pozicioniranja, pa im je stoga potrebno posvetiti mnogo pažnje tijekom realizacije terenskih radova. Kod stabilizacije točaka geodetske mreže potrebno je voditi računa da se točke mreže ne unište tijekom gradnje i građevinskih aktivnosti, a sukladno organizaciji gradilišta. Stabilizacija točaka geodetske mreže tunela Sv. Rok obavljena je armirano-betonskim stupovima s ubetoniranim metalnim pločama koje pri izmjeri omogućuju primjenu metode prisilnog centriranja, sl. 6. Na nekoliko mjesta, točke geodetske mreže stabilizirane su betoniranjem u živu stijenu (URL 2). Ovakav način stabilizacije omogućuje da se izmjera svih veličina obavi u potpunosti centrično, odnosno bez ekscentriciteta stajališta instrumenta i bez ekscentriciteta signala. Otežavajuća okolnost pri stabilizaciji točaka bio je miniran i nepristupačan teren.

SI. 6. Stabilizacija točaka geodetske mreže (URL 2)

3.1.2. Instrumentarij

Za izmjeru pravaca i duljina, sukladno planu izmjere i geometrijskoj konfiguraciji mreže, korištena je totalna stanica TC1800 tvrtke Leica, sl. 7, s odgovarajućim priborom, sl. 8, 9 i 10. Karakteristike totalne stanice (URL 4):

Točnost mjerenja pravaca: 1".

Rezolucija čitanja: 1".

Metoda: apsolutna, dijamentralna, bez prekidna.

Kompezator: Dvo-osni kompezator.

Područje kompezatora: 4'.

Točnost mjerenja duljina: 1 mm + 2 ppm.

Rezolucija čitanja: 0.1 mm.

Vrijeme mjerenja: 3 s.

Metoda: fazna mjerenja.

Pohrana podataka: memorijska kartica.

S obzirom da je stabilizacija točaka geodetske mreže obavljena primjenom metode prisilnog centriranja, sl. 6, korišten je odgovarajući pribor. Za prisilno centriranje potrebne su podnožne ploče, sl. 10, koje omogućuju centrični postav instrumenta i prizmi. Sukladno tijeku izmjere, pri promjeni stajališta zamjenjuju se mjesta instrumenta i prizme, pri čemu se instrument i prizma odvajaju od podnožne ploče. Za postavljanje prizme na podnožnu ploču koristi se nosač prizme, sl. 7. Navedenim postupkom uklonjene su moguće pogreške vezane uz ekscentrični postav instrumentarija, odnosno eliminirana je potreba reduciranja mjerenja na centar.

SI. 7. Totalna stanica TC 1800 Leica (URL 5)

Sl. 8. Prizma (reflektor) (URL 6)

SI. 9. Nosač prizme (URL 6)

Sl. 10. Podnožna ploča (URL 6)

Karakteristike prizme (URL 6) :

Oblik: kružna prizma s metalnim držačem.

Točnost centriranja: 0.1 mm.

Doseg: do 3500 m.

Pri uporabi instrumenta TC 1800 važno je naglasiti da se neposrednom izmjerom određuju prostorne duljine između točka (kosa duljina). Redukcija kosih duljina na horizont instrumenta obavlja se automatizirano, a temeljem iznosa zenitnih udaljenosti. Stoga, pri izmjeri se velika pozornost treba posvetiti pravilnom viziranju signala kako bi se primjerenom kvalitetom odredile zenitne udaljenosti te posljedično horizontalne duljine.

3.1.3. Metode izmjere

Izmjera pravaca i duljina rezultat su II. faze radova na uspostavi geodetske osnove tunela Sv. Rok. Izmjera pravaca i duljina obavljena je instrumentom TC1800 Leica, br. 419175. Mjerenja su obavljena tijekom listopada 1997. godine, a obavili su ih stručnjaci Zavoda za fotogrametriju d.d. iz Zagreba. Izmjera horizontalnih pravaca i duljina obavljena je neovisno, ali simultano na pojedinim točkama mreže, s istim instrumentom i priborom. Izmjera je obavljena s tri ponavljanja mjerenja svake veličine koja je bila predmet izmjere.

Izmjera pravaca obavljena je primjenom girusne metode, s tri girusa, a izmjera duljina obavljena je dvostrukim mjerenjem, s šest ponavljanja izmjere svake duljine. Na svakoj od geodetskih točaka je izmjera duljina u svakom smjeru, tj. smjeru naprijed i smjeru natrag, vremenski slijedila tijek izmjere pravaca girusnom metodom. Naime, u svakom je girusu i polugirusima simultano s izmjerom horizontalnog pravca mjerena i duljina (uz automatsku redukciju u ravninu projekcije).

Obzirom na prisilno centriranje instrumentarija nije bilo potrebno obavljanje redukcije mjerenja na centar. Treba naglasiti da obzirom na trenutak izmjere (listopad), sukladno geografskoj lokaciji, godišnjem dobu i atmosferskim uvjetima, nisu postojali posve idealni uvjeti za realizaciju izmjere. Duljine su automatizirano reducirane u ravninu Gauss-Krugërove projekcije (5-zona), pri čemu su uvedene: atmosferska korekcija, redukcija kosih duljina na horizont instrumenta, redukcija horizontalne duljine s horizonta instrumenta na plohu elipsoida i korekcija mjerila za redukciju duljine s elipsoida u ravninu projekcije.

Korišten je relativno nov i sukladno dostupnim podacima primjereno rektificiran instrumentarij.

Podaci neposredne izmjere pravaca i duljina preuzeti su iz (Klak i Rožić, 1997) te su u izvornom obliku i sadržaju navedeni u prilogu 1.

4. Računska obrada podataka izmjere geodetske mreže tunela Sv. Rok

Predmet računske obrade u svrhu pozicioniranja točaka mreže su neposredni podaci izmjere pravaca i duljina u geodetskoj mreži na sjevernom portalu tunela Sv. Rok (Klak i Rožić 1997). Izmjerom dobivene vrijednosti pravaca i duljina pregledno su predočene u prilogu 1, uz napomenu da su podaci pravaca u prilogu 1.1. sistematizirani u zasebne tablice koje korenspodiraju pojedinom girus, a dok su podaci duljina, u prilogu 1.2, sistematizirani također u zasebne tablice, koje sadrže sve mjerene duljine s pojedine točke prema ostalim točkama mreže. Na temelju podataka izmjere moguće je realizirati geodetsku mrežu na tri neovisna načina:

- matematičkim modeliranjem mreže i računskom obradom mikro-triangulacijske mreže,

- matematičkim modeliranjem mreže i računskom obradom mikro-trilateracijske mreže,

 matematičkim modeliranjem mreže i računskom obradom mikro-triangulateracijske mreže.

Računsku obradu treba obaviti bez fiksnog priključenja mikro-mreže na državni ravninski koordinatni sustav (HDKS). Takvim postupkom računske obrade ne prenose se pogreške danih veličina (koordinate točaka državnog koordinatnog sustava) na tražene veličine (koordinate točaka geodetske mreže). Posljedica takvog pristupa je činjenica da u mreži po položaju nije poznata (zadana) niti jedna točka (koordinate apsolutne veličine), već su poznate samo relativne veličine (pravci i duljine). Takva mreža naziva se slobodna mreža (Feil 1990). Zbog nepoznavanja apsolutnih veličina, dolazi do pojave defekta datuma u funkcijskom dijelu matematičkog modela mreže. Defekt datuma nastaje zbog nedefiniranosti koordinatnog sustava u kojem se određuju tražene apsolutne veličine, jer nisu poznate informacije o položaju ishodišta, usmjerenju koordinatnih osi i mjerilu koordinatnog sustava (Rožić 2007). Defekt datuma je unaprijed poznat, jer su parametri datuma 2D koordinatnog sustava određeni brojem stupnjeva slobode gibanja tog koordinatnog sustava. Broj stupnjeva slobode koordinatnog sustava ovisan je o vrsti mjerenja i broju dimenzija koordinatnog sustava, tablica 3. Za približne vrijednosti koordinata točaka geodetske mreže tunela Sv. Rok usvojene su koordinate točaka iz obrade podataka GPS izmjere koje su određene u HDKS-u odgovarajućim postupkom u sklopu I. faze radova, tablica 2. Ove vrijednosti odredile su približnu orijentaciju koordinatnog sustava u ravnini Gauss-Krugërove projekcije, bez uvođenja ikakve prisile.

Dimenzija i vrsta mreže		Mjerene veličine	Stupnjevi slobode	Defekt datuma
1D	Nivelmanska mreža	visinske razlike	1 translacija (H)	1
	Trilateracijska mreža	horizontalne duljine	2 translacije (X, Y) 1 rotacija (H)	3
2D Tria	Triangulacijska mreža	horizontalni pravci	2 translacije (X, Y) 1 rotacija (H), 1 mjerilo (m)	4
	Trinagulateracijska mreža	horizontalne duljine i pravci	2 translacije (X, Y) 1 rotacija (H)	3
3D	Prostorna mreža	prostorne duljine	3 translacije (X, Y, H) 3 rotacije (X, Y, H)	6

Tablica 3. Stupnjevi slobode i defekt datuma

Postupak računske obrade mjerenih veličina, gdje koordinatni sustav nije unaprijed definiran, a tražene veličine (nepoznanice) se određuju pomoću funkcija povezanosti mjerenih veličina i nepoznatih veličina, izraz (1), uz primjenu metode najmanjih kvadrata, izraz (11), naziva se singularno izjednačenje posrednih mjerenja. Pri tome, model geodetske mreže se sastoji od funkcijskog i stohastičkog dijela. Funkcijski dio modela obuhvaća postavljanje funkcija posrednih mjerenja, odnosno funkcija povezanosti mjerenja i nepoznanica (Rožić 2007):

$$\begin{split} \bar{L}_{1} &= f_{1}(\bar{x}_{1}, \bar{x}_{2}, ..., \bar{x}_{u}), \\ \bar{L}_{2} &= f_{1}(\bar{x}_{1}, \bar{x}_{2}, ..., \bar{x}_{u}), \\ \vdots \\ \bar{L}_{n} &= f_{n}(\bar{x}_{1}, \bar{x}_{2}, ..., \bar{x}_{u}), \end{split}$$

gdje je:

 L_i - mjerena veličina, (i = 1, 2,..., n),

- f_i funkcija posrednih mjerenja, (i = 1, 2,..., n),
- \bar{x}_i izjednačene vrijednosti nepoznanica, (i = 1, 2,..., u),
- u broj nepoznanica,
- n broj mjerenih veličina.

U slučaju triangulacijskih i trilateracijskih ravninskih mreža funkcije posrednih mjerenja su nelinearne, pa ih je neohodno linearizirati razvojem u Taylorov red. Pri razvoju u red zadržavaju se samo linearni članovi, a odbacivanje kvadratnih članova i članova višeg

(1)

reda bit će ispravno samo ako su po veličini malog iznosa. Navedeno će se ostvariti uz odgovarajuću kvalitetu približnih vrijednosti nepoznanica (Feil 1989, Rožić 2007). Navedene funkcije dane izrazom (1) u najopćenitijem obliku, u trilateracijskoj mreži poprimaju oblik funkcija za duljinu u ravninskom koordinatnom sustavu, a u triangulacijskoj mreži funkcija smjernog kuta. Rezultat linearizacije funkcija posrednih mjerenja je sustav jednadžbi popravaka (Feil 1989), odnosno funkcijski dio matematičkog modela geodetske mreže,

$$\mathbf{v} = \mathbf{A} \cdot \mathbf{x} - \mathbf{I}, \qquad (2)$$

gdje je:

v - vektor popravaka mjerenja,

A - matrica koeficijenata jednadžbi popravaka,

x - vektor prikraćenih nepoznanica,

I - vektor prikraćenih mjerenja.

Pri tome evidentan je odnos nepoznanica, približnih vrijednosti nepoznanica i prikraćenih vrijednosti nepoznanica,

$$\bar{\mathbf{x}} = \mathbf{x}_{0} + \mathbf{x},\tag{3}$$

gdje je:

x - vektor izjednačenih vrijednosti nepoznanica,

xo - vektor približnih vrijednosti nepoznanica,

x – vektor prikraćenih nepoznanica.

Budući da postav funkcija posrednih mjerenja u triangulacijskoj mreži podrazumijeva uporabu funkcija smjernog kuta neohodno je uvođenje nepoznanica kuta orijentacije z_r (Feil 1989). Pri tomu je evidentan odnos kuta orijentacije, približne vrijednosti kuta orijentacije i njegove prikraćene vrijednosti,

$$z_r = z_r^o + z, \tag{4}$$

gdje je:

zr^o - približna vrijednost kuta orijentacije,

z - prikraćena vrijednost nepoznanice kuta orijentacije.

Približna vrijednost kuta orijentacije z_r^o određuje se pomoću mjerenih pravaca L_{ri} i približnih vrijednosti smjernih kuteva n_{ri} (smjerni kutevi računaju se pomoću približnih koordinata točaka),

$$z_{r}^{o} = \frac{1}{n} \sum_{i=0}^{n} (n_{ri} - L_{ri}), \qquad (5)$$

17

gdje je:

r - stajalište,

i - signal,

n – broj mjerenih pravaca na stajalištu.

Za eliminaciju nepoznanice kuta orijentacije z iz jednadžbi popravaka najčešće se zbog jednostavnosti koristi Gauss-ov postupak (Feil 1989). Ishod primjene Gauss-ovog postupka su reducirane jednadžbe popravaka

$$\mathbf{v}_{\mathrm{r}} = \mathbf{A}_{\mathrm{r}} \mathbf{x} - \mathbf{I}_{\mathrm{r}}. \tag{6}$$

Stohastički dio matematičkog modela geodetske mreže definira odnos između mjerenja na temelju točnosti mjerenja, odnosno težina koje se "a priori" pridružuju mjerenim veličinama. U slučaju neovisnih posrednih mjerenja različitih točnosti, matrica težina poprima oblik dijagonalne matrice.

$$\mathbf{P}_{nxn} = \begin{bmatrix} p_{1} & & & \\ & p_{2} & & \\ & & \ddots & \\ & & & p_{n} \end{bmatrix} = s_{0}^{2} \cdot \mathbf{V}_{II}^{-1} = s_{0}^{2} \cdot \begin{bmatrix} s_{1}^{2} & & & \\ & s_{2}^{2} & & \\ & & \ddots & \\ & & & s_{n}^{2} \end{bmatrix}^{-1}, \quad (7)$$

gdje je:

P - matrica težina,

 p_i - težine mjerenja, (i = 1, 2,..., n),

so - referentno standardno odstupanje,

VII – matrica varijance mjerenja,

n - broj mjerenih veličina,

s_i – standardno odstupanje mjerenja, (i = 1, 2,..., n).

Kod zasebne realizacije trilateracijske ili triangulacijske mreže, zbog istodimenzionalnih mjerenih veličina ne postoji potreba homogenizacije težina, ali se obavezno kod triangula-teracijske mreže javlja potreba njihove homogenizacije. Razlog su dimenzionalno različita mjerenja, tj. pravci (kutne veličine) i duljine (linearne veličine). Pri tome, težine kutnih mjerenja određene su izrazom (Rožić 2007)

$$p_k = \frac{k_k}{s_k^2},\tag{8}$$

gdje je:

k_k - faktor proporcionalnosti,

 s_{k}^{2} - standardno odstupanje kutnih mjerenja.

Za faktor proporcionalnosti k uobičajno se odabire povoljna vrijednost kako bi mjerenja poprimila težine što bliže jediničnim vrijednostima. Težine linearnih mjerenja određuju se izrazom

$$p_{d} = \frac{k_{d}}{s_{d}^{2}},$$
(9)

gdje je:

k_d - faktor proporcionalnosti,

 s_{d}^{2} - standardno odstupanje duljina.

Za faktor proporcionalnosti k_d uvodi se predhodno odabrani faktor proporcionalnosti iz kutnih mjerenja, tj. $k_d = k_k$. Temeljem definiranih težina kutnih i linearnih mjerenja formira se matrica težina

$$\mathbf{P}_{nxn} = \begin{bmatrix} \mathbf{P}_{k} & & & & & \\ & \mathbf{P}_{k} & & & \\ & & \mathbf{P}_{d} \\ & & & n_{d}xn_{d} \end{bmatrix} = \begin{bmatrix} p_{k_{1}} & & & & & \\ & p_{k_{2}} & & & & \\ & & & p_{k} & & & \\ & & & p_{d_{1}} & & \\ & & & & p_{d_{2}} & \\ & & & & & p_{d} \end{bmatrix}.$$
(10)

Izjednačenje posrednih mjerenja obavlja se metodom najmanjih kvadrata uz primjenu temeljnog načela:

$$\mathbf{v}^{t} \mathbf{P} \mathbf{v} \longrightarrow \min,$$
 (11)

gdje je **v** vektor popravaka mjerenja, uz pretpostavku da su mjerenja opterećena samo slučajnim pogreškama. Rezultat primjene metode najmanjih kvadrata je sustav normalnih jednadžbi (Feil 1989)

$$\mathbf{N} \cdot \mathbf{x} - \mathbf{n} = \mathbf{0} \tag{12}$$

gdje je:

N - matrica koeficijenata normalnih jednadžbi,

n - vektor apsolutnih članova normalnih jednadžbi.

Kod rješavanja sustava normalnih jednadžbi treba uzeti u obzir singularnost pripadne matrice koeficijenata zbog čega nije moguća primjena Cayley-eve inverzije, već je neophodno koristiti Moore-Penrose-ovu inverziju (pseudoinverziju). Koordinatni sustav određen u sklopu singularnog izjednačenja posrednih mjerenja uobičajno se naziva i optimalnim (Rožić 2007). Zbog poznavanja uzroka nastanka i konkretnog iznosa defekta datuma moguće je relativno jednostavno određivanje pseudoinverzije matrice koeficijenata normalnih jednadžbi. Pseudoinverzija matrice **N** dana je izrazom (Rožić 2007)

$$\mathbf{N}^{-} = \mathbf{Q}_{\mathbf{x}\mathbf{x}} = (\mathbf{N} + \mathbf{G}\mathbf{G}^{\mathsf{t}})^{-1} - \mathbf{G}\mathbf{G}^{\mathsf{t}}, \tag{13}$$

gdje je **G** matrica svojstvenih vektora matrice **N** za one svojstvene vrijednosti te matrice koje su jednake nuli.

Elementi matrice **G** su unaprijed poznati i odgovaraju matrici koeficijenata jednadžbi popravaka pri Helmertovoj transformaciji geodetske mreže između približno definiranog koordinatnog sustava i definitivnog koordinatnog sustava (Rožić 2007). Struktura matrice ovisna je o iznosu defekta datuma, odnosno broj stupaca matrice **G** odgovarat će defektu datuma, a broj redaka broju nepoznanica koordinata.

U slučaju mikro-triangulacijske mreže matrica **G**, uz pretpostavku da je obavljena eliminacija nepoznanica kuta orijentacije, poprimit će strukturu oblika (Rožić 2007)

$$\mathbf{G} = \left[\begin{array}{cc} \mathbf{g}_{tx} & \mathbf{g}_{ty} & \mathbf{g}_{rz} & \mathbf{g}_{m} \end{array} \right], \tag{14}$$

gdje su:

 \mathbf{g}_{tx} – svojstveni vektor matrice **N** koji odgovara translaciji koord. sustava duž x osi,

 \mathbf{g}_{ty} – svojstveni vektor matrice \mathbf{N} koji odgovara translaciji koord. sustava duž y osi,

 \mathbf{g}_{rz} – svojstveni vektor matrice \mathbf{N} koji odgovara rotaciji koord. sustava oko z osi,

g_m – svojstveni vektor matrice **N** koji odgovara promjeni mjerila.

U slučaju mikro-trilateracijske mreže matrica **G** poprimit će strukturu oblika (Rožić 2007)

 $\mathbf{G} = [\mathbf{g}_{tx} \ \mathbf{g}_{ty} \ \mathbf{g}_{rz}].$ (15) Iz usporedbe izraza (14) i (15) vidljivo je da se struktura matrice \mathbf{G} u triangulacijskoj i trilateracijskoj mreži razlikuje u svojstvenom vektoru promjene mjerila, jer je u trilateracijskoj mreži mjerilo određeno mjernim uređajem kojim se mjere duljine. Struktura matrice \mathbf{G} u mikro-triangulateracijskoj mreži, zbog činjenice da su mjereni pravci i duljine (postoje tri stupnja slobode gibanja referentnog koordinatnog sustava), podudara se s strukturom matrice \mathbf{G} u mikro-trilateracijskoj mreži, izraz (15).

Temeljem pseudoinverzije i rješenja normalnih jednadžbi omogućeno je računsko određivanje izjednačenih vrijednosti nepoznanica i mjerenja te pripadnih pokazatelja kvalitete. Pokazatelji kvalitete u slučaju mjerenja različitih točnosti računaju se za tzv. referentno mjerenje (fiktivno mjerenje čija je težina jednaka jedinici), mjerenja i izjednačena mjerenja. Računaju se:

- referentno standardno odstupanje

$$s_{o} = \sqrt{\frac{\mathbf{v}^{t} \mathbf{P} \mathbf{v}}{n_{f}}},$$
(16)

gdje je n_f broj prekobrojnih mjerenja,

- standardno odstupanje pojedinog mjerenja

$$s_i = \frac{s_o}{\sqrt{p_i}}, (i = 1, 2, ..., n),$$
 (17)

gdje je p_i težina pojedinog mjerenja,

- standardno odstupanje izjednačenog mjerenja

$$\bar{s}_i = s_o \sqrt{\bar{q}_{ii}}, (i = 1, 2, ..., n),$$
 (18)

gdje je \bar{q}_{ii} kofaktor pojedinog izjednačenog mjerenja.

Kofaktori izjednačenih mjerenja sadržani su na glavnoj dijagonali matrice kofaktora izjednačenih mjerenja, koja je određena izrazom

$$\overline{\mathbf{Q}} = \mathbf{A} \, \mathbf{Q}_{\mathbf{x}\mathbf{x}} \, \mathbf{A}^{\mathsf{t}}. \tag{19}$$

U svrhu određivanja položajne točnosti točaka mreže računaju se lokalni i globalni kriteriji, gdje su lokalni kriteriji:

- standardno odstupanje položaja točke u smjeru osi x koordinatnog sustava

$$s_{x_i} = s_o \sqrt{q_{x_i x_i}}$$
, (i = 1, 2,..., r), (20)

- standardno odstupanje položaja točke u smjeru osi y koordinatnog sustava

$$s_{y_i} = s_0 \sqrt{q_{y_i y_i}}$$
, (i = 1, 2,..., r), (21)

gdje je:

 $q_{x_ix_i}$ – kofaktor nepoznanice x_i ,

 $q_{v_iv_i}$ – kofaktor nepoznanice y_i,

r – broj točaka mreže.

Kofaktori nepoznanica sadržani su na glavnoj dijagonali matrice kofaktora nepoznanica \mathbf{Q}_{xx} , koja je određena pseudoinverzijom matrice **N**.

U svrhu određivanja položajne točnosti točaka mreže u proizvoljnom smjeru uobičajno se koristi Helmertova elipsa položajne točnosti. Određivanje parametara Helmertovih elipsi temelji se na određivanju svojstvenih vrijednosti (λ) sub-matrice kofaktora nepoznanica koje odgovaraju pojedinim točkama mreže. Svojstvene vrijednosti određuju se rješavanjem polinoma drugog stupnja koji ima oblik (Feil 1989):

$$\lambda^{2} - \lambda \left(q_{x_{i}x_{i}} + q_{y_{i}y_{i}} \right) + q_{x_{i}x_{i}}q_{y_{i}y_{i}} + q_{x_{i}y_{i}}^{2} = 0, \quad (i = 1, 2, ...r)$$
(22)

Na temelju izračunatih svojstvenih vrijednosti $\lambda_{1,2}$ računaju se:

- minimalna točnost položaja točke (velika poluos elipse)

$$A = s_0 \sqrt{\lambda_1} , \qquad (23)$$

- maksimalna točnost položaja točke (mala poluos elipse)

$$\mathsf{B} = \mathsf{s}_{\mathsf{o}} \sqrt{\mathsf{\lambda}_2} \,, \tag{24}$$

- smjer minimalne točnosti položaja točke

$$\tan (2\Theta) = \frac{q_{x_i y_i}}{q_{x_i x_i} - q_{y_i y_i}}.$$
 (25)

Helmertove elipse (apsolutna položajna točnosti) određuju položajnu točnost svake točke geodetske mreže u odnosu na njihov apsolutan položaj u koordinatnom sustavu.

Osim apsolutnih elipsi pogrešaka uputno je i određivanje tzv. relativnih elipsi položajne točnosti. One omogućuju prikaz uzajamne položajne točnosti dviju točaka mreže koje su međusobno vezane mjerenjem. Njihovi elemeti određuju se pomoću submatrica kofaktora nepoznanica koje pripadaju razmatranim točkama (Rožić 2008). Matrica kofaktora

$$\mathbf{Q}_{\Delta\Delta} = \mathbf{Q}_{22} + \mathbf{Q}_{11} - \mathbf{Q}_{12} - \mathbf{Q}_{21} = \begin{bmatrix} q_{\Delta xx} & q_{\Delta xy} \\ q_{\Delta xy} & q_{\Delta yy} \end{bmatrix},$$
(26)

određena je primjenom zakona o prirastu kofaktora na vektor koordinatnih razlika

$$\Delta = \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}, \tag{27}$$

gdje su:

$$\Delta \mathbf{x} = \mathbf{x}_2 - \mathbf{x}_1, \tag{28}$$

$$\Delta y = y_2 - y_1, \tag{29}$$

koordinatne razlike dviju promatranih točaka mreže. Elementi relativnih elipsi određuju se pomoću istih izraza kao i elementi Helmertove elipse, uz sub-matrice kofaktora dane izrazom (26)

- parametri relativne elipse položajne točnosti

$$A^{2} = \frac{s_{0}^{2}}{2} (q_{\Delta xx} + q_{\Delta yy} + k),$$
(30)

$$B^{2} = \frac{s_{0}^{2}}{2} (q_{\Delta xx} + q_{\Delta yy} - k), \qquad (31)$$

22

$$\tan (2\Theta) = \frac{2q_{\Delta xy}}{q_{\Delta xx} - q_{\Delta yy}},$$
(32)

$$k = \sqrt{(q_{\Delta xx} - q_{\Delta yy})^2 + 4 q_{\Delta xy}}.$$
(33)

Karakteristični globalni kriterij položajne točnosti je standarno odstupanje položaja točke određeno formulom Mittermayera (Mittermayer 1972)

$$s_{rx} = s_o \sqrt{\frac{\text{trag } \mathbf{Q}_{xx}}{r}}, \qquad (34)$$

gdje je r broj točaka u mreži.

Računska obrada geodetske mreže tunela Sv. Rok - "Sjeverni portal" (izjednačenje), u sve tri spomenute varijante, može se obaviti uporabom algoritma singularnog izjednačenja posrednih mjerenja (Rožić 2007).

4.1. Primarna računska obrada podataka izmjere

U slučaju kada su pri izmjeri geodetske mreže sve relativne veličine mjerene s određenim brojem ponavljanja nepraktično je njihovo neposredno uvođenje u izjednačenje mreže već je potrebno i uputno obaviti tzv. primarnu računsku obradu neposrednih podataka izmjere. Drugim riječima, za svaku relativnu veličinu mjerenu u n ponavljanja (jedno mjerenje je dovoljno da se dobije elementarno saznanje o veličini), a temeljem prekobrojnih mjerenja

$$n_f = n - 1,$$
 (35)

neohodno je obaviti izjednačenje primjenom funkcijskog modela direktnih mjerenja (Rožić 2009). Rezultat primarne računske obrade su jednoznačne vrijednosti svih relativnih veličina (pravci, duljine) koje su potrebne za definiranje matematičkog modela geodetske mreže, tj. relativne veličine za definiranje funkcijskog modela i kriteriji točnosti za određivanje stohastičkog modela. Na temelju jednoznačno određenih vrijednosti relativnih veličina moguće je obaviti ispitivanje prisutnosti grubih pogrešaka izmjere i pripremiti mjerenja za daljnu računsku obradu.

4.1.1. Primarna računska obrada pravaca

Primarnom računskom obradom pravaca, čiji su podaci pregledno navedeni u prilogu 1, tablica 1.1.1. – 1.1.18., potrebno je odrediti jednoznačne vrijednosti pravaca i pripadne kriterije točnosti. Svi pravci su obostrani mjereni, a mjerenje pravaca je obavljeno u tzv. potpunim girusima. Stoga, njihovo izjednačenje i određivanje ocjene točnosti moguće je obaviti primjenom dva postupka. Moguće je primjeniti izjednačenje direktnih mjerenja ili izjednačenje posrednih mjerenja (Feil 1989), jer se s oba postupka dolazi do istih rezultata. Jednostavnija i brža računska obrada vezana je uz primjenu izjednačenja direktnih mjerenja. Za takav postupak određivanja jednoznačnih vrijednosti pravaca i pripadnih kriterija točnosti uvriježen je stručni naziv "stajališno izjednačenje" (Feil 1989). Pri stajališnom izjednačenju neophodno je da u svim girusima pravci budu reducirani na istovjetni početni pravac, kojem se računski dodijeljuje vrijednost jednaka nuli. Navedeni postupak redukcije obavlja se u trigonometrijskom obrazcu br. 1 (Macarol 1961), a predočen je u prilogu 2. Sukladno realizaciji izmjere pravaca u dva polugirusa (stupac 4 i 5), za svaki je pojedini girus u pripadnoj tablici obavljeno računanje srednje vrijednosti pravca iz oba polugirusa (stupac 6), dvostruka kolimacijska pogreška (stupac 8) i reducirane sredine pravaca (stupac 7), uz računske kontrole računanja aritmetičke sredine i reducirane aritmetičke sredine.

Dvostruka kolimacijska pogreška (2C) je sistematska pogreška uzrokovana konstrukcijom instrumenta, a eliminira se aritmetičkom sredinom pravaca iz I. i II. polugirusa. Bez obzira na rektificiranost instrumenta, teško je postići da iznos kolimacijske pogreške bude dosljedno jednak nuli. Jednim dijelom se zbog toga i izmjera pravaca obavlja girusnom metodom u dva polugirusa, jer se računanjem aritmetičke sredine pravca eliminira kolimacijska pogreška. Sukladno razini rektificiranosti instrumenta, kolimacijska pogreška bi trebala biti vrlo malog iznosa, sukladnog nominalnoj točnosti instrumenta te ujednačena za sve pravce sadržane u girusu. Naglašena varijabilnost iznosa dvostruke kolimacijske pogreške pri mjerenju najčešće upućuje na nedovoljnu stručnost ili nemar mjeritelja, kojii ne obavlja pojedine mjerne operacije na primjeren način (fokusiranje, fiziološka svojstva oka opažača, pogreška viziranja, "mrtvi hod vijaka" i dr.), na promjenu osvjetljenosti signala pri mjerenju polugirusa, na pomak instrumenta *i*/ili signala i dr. Kolimacijska pogreška u zapisnicima mjerenja pravaca u geodetskoj mreži tunela Sv. Rok poprima relativno mali iznos i posjeduje ujednačeni predznak, odnosno razvidna je primjerena varijabilnost.

Navedeno ukazuje na kvalitetnu izvedbu mjerenja, odnosno iznos pogreške je primjeren statusu uredne rektificiranosti instrumenta. Također, varijabilnost kolimacijske pogreške, upućuje na činjenicu da se mjeritelj pridržavao načela i stručnih pravila izmjere pravaca girusnom metodom.

Pri izjednačenju direktnih mjerenja najvjerojatnije vrijednosti pravaca mjerenih u n girusa (ponavljanja) dobiva se računanjem obične aritmetičke sredine (Feil 1989)

$$\overline{L_i} = \frac{1}{n} \Sigma L_i, \quad (i = 1, 2, ..., n),$$
(36)

gdje je:

Li - najvjerojatnija vrijednost pravca,

 Σ L_i - zbroj pravaca iz n girusa,

n - broj girusa.

Kriteriji ocjene točnosti su (Feil 1989):

- standardno odstupanje pojedinog mjerenja

$$s_i = \sqrt{\frac{\mathbf{v}^t \, \mathbf{v}}{(n-1)(u-1)}}, \quad (i=1, 2, \dots u),$$
 (37)

gdje je:

v^t v - zbroj kvadrata popravaka,

 n_f - broj prekobrojnih mjerenja, gdje je $n_f = (n - 1) (u - 1)$,

u - broj pravaca u girusu,

-standardno odstupanje izjednačenog pravca,

$$s_{x_i} = \frac{s_i}{\sqrt{n}}$$
, (i=1, 2,...u), (38)

Postupak stajališnog izjednačenja pravaca cjelovito je predočen je u prilogu 3 u zasebnim tablicama za svaku pojedinu točku sadržanu u mreži. Rezultati stajališnog izjednačenenja objedinjeni su u tablici 4, gdje su navedene izjednačene vrijednosti pravaca s pripadnim kriterijima ocjene točnosti. Ujedno, zbog potrebe izjednačenja geodetske mreže, uvedena je i kontinuirana numeracija pravaca (L₁, L₂,...L₂₆) sukladno sl. 11.

Oznaka	Stajalište	Vizura	Pravac	Si	s _{xi}
пјегенја	nijerenja		0 ′ ″	"	"
L1	P5	P2	0°00' 00.00''	1.79	1.03
L2	P5	P1	9°02' 30.00"	1.79	1.03
L3	P5	P11	38°33' 13.67"	1.79	1.03
L4	P4	172Z1	0°00' 00.00''	2.06	1.19
L5	P4	P11	74°16' 05.83"	2.06	1.19
L6	P4	P2	310°25' 08.00"	2.06	1.19
L7	P4	P1	343°42' 07.50"	2.06	1.19
L8	P11	P5	0°00' 00.00''	1.54	0.89
L9	P11	P4	19°11' 14.50"	1.54	0.89
L10	P11	P2	37°14' 42.67"	1.54	0.89
L11	P11	P1	4153' 00.17"	1.54	0.89
L12	P11	172Z1	73°36' 25.00"	1.54	0.89
L13	P2	172Z1	0°00' 00.00''	0.81	0.47
L14	P2	P1	45°36' 54.83"	0.81	0.47
L15	P2	P11	64°12' 52.50"	0.81	0.47
L16	P2	P4	102°18' 15.17"	0.81	0.47
L17	P2	P5	168°24' 44.00"	0.81	0.47
L18	172Z1	P11	0°00' 00.00''	0.95	0.55
L19	172Z1	P4	51°18' 42.33"	0.95	0.55
L20	172Z1	P1	61°45' 53.00"	0.95	0.55
L21	172Z1	P2	79°25' 36.17"	0.95	0.55
L22	P1	172Z1	0°00' 00.00''	1.24	0.71
L23	P1	P11	86°30' 39.33"	1.24	0.71
L24	P1	P4	153°14' 54.67"	1.24	0.71
L25	P1	P5	195°06' 54.67"	1.24	0.71
L26	P1	P2	243°16' 32.67"	1.24	0.71

Tablica 4. Izjednačeni pravci i ocjene točnosti

Na temelju rezultata tzv. stajališnog izjednačenja razvidna je činjenica o postignutoj visokoj točnosti izmjere pravaca. Izračunati kriteriji točnosti izjednačenih pravaca nalaze se u intervalu od 0.47" do 1.19", tablica 4, što ukazuje na činjenicu da su mjerenja obavljena primjereno i da su sukladna specificiranoj točnosti mjerenja pravaca instrumentom Leica TC 1800.

SI. 11. Geodetska mreža i numeracija pravaca

Agregiranu (objedinjenu) ocjenu točnosti pravaca moguće je definirati primjenom zakona o prirastu varijanci na standardna odstupanja pojedinog mjerenja s_i i standardno odstupanje nepoznanica s_{x_i}. Temeljem podataka sadržanih u tablici 4 određeni su:

- standardno odstupanje mjerenog pravca

$$s_{ri} = \frac{\sqrt{s_{i1}^2 + s_{i2}^2 + \ldots + s_{in}^2}}{u} = 0.59", \tag{39}$$

- standardno odstupanje izjednačenog pravca (standardno odstupanje aritmetičke sredine)

$$s_{rx} = \frac{\sqrt{s_{x1}^2 + s_{x2}^2 + \ldots + s_{xn}^2}}{u} = 0.33", \tag{40}$$

27

gdje je u broj pravaca u mreži.

Agregirani kriteriji točnosti izmjere pravaca, izrazi (39) i (40), upućuju uistinu na visoku točnost izmjere pravaca i sukladni su sa specificiranom točnošću instrumenta od strane proizvoditelja.

Usprkos činjenici da je postignuta visoka točnost izmjere, u cilju provjere eventualne prisutnosti grubih pogrešaka obavljeno je računanje nesuglasica u figurama geodetske mreže. Osnovna figura na temelju koje se računaju nesuglasice je trokut, sl. 12. Računanje nesuglasice obavlja se izrazom (Feil 1989)

$$\omega = L_2 - L_1 + L_4 - L_3 + L_6 - L_5 - 180^\circ,$$
(41)
gdje su:

L_i - mjereni pravci,

 ω - nesuglasica.

SI. 12. Trokut definiran pravcima

Računanje nesuglasica na temelju podataka izmjere pravaca predočeno je u prilogu 4. Određivanje nesuglasica obavljeno je u svim trokutima koje je bilo moguće razabrati u geodetskoj mreži, bez obzira na njihovu međusobnu geometrijsku ovisnost. U mreži je idetificirano ukupno 13 trokuta, a podaci nesuglasica iz priloga 4 objedinjeni su u tablici 5.

Tablica 5. Nesuglasi	ice figura
----------------------	------------

Trokut	Nesuglasica ω "
I.	-2.90
II.	-0.83
III.	-2.17
IV.	-2.17

V.	1.00
VI.	1.33
VII.	-2.17
VIII.	2.67
IX.	-1.33
Х.	-1.50
XI.	-2.83
XII.	1.00
XIII.	5.33

Nesuglasica figure je odstupanje zbroja kuteva (kut se računa na osnovu razlike pravaca) u trokutu, sl. 12, od teorijske vrijednosti koju bi trebao poprimiti. Iznos nesuglasica je u intervalu od -2.90" do 5.33". Iznos nesuglasica, sukladno rezoluciji mjernog sustava od 1", je primjeren i nema naznaka grubih pogrešaka. Iz omjera broja negativnih (9) i pozitivnih (4) vrijednosti nesuglasica, može se zaključiti da na izmjeru pravaca nije djelovao neki značajniji sistematski utjecaj, iako je uzorak relativno malen. Kao "a priori" kriterij točnosti izmjere moguće je na temelju nesuglasica zatvaranja figura, izračunati standardno odstupanje zatvaranja trokuta, sukladno formuli Ferrero, izraz (42). Formula Ferrero, za razliku od modela stajališnog izjednačenja, gdje se izjednačavaju mjereni pravci zasebno na pojedinim točkama mreže i neovisno o geometrijskoj konfiguraciji mreže, uzima u obzir geometrijsku konfiguraciju mreže, ali samo na razini trokuteva koji nisu međusobno "čvrsto" geometrijski povezani. Iznos standarnog odstupanja zatvaranja trokuta primjeren je s obzirom na specificiranu točnost mjerenja pravaca instrumentom Leica TC 1800. Analizom podataka izmjere pravaca pokazalo se da je mjerenje pravaca obavljeno stručno, precizno, bez grubih i sistematskih pogrešaka. Stoga, mjerenja i rezultati primarne računske obrade mjerenja su prikladni za daljnu računsku obradu, tj. izjednačenje geodetske mreže.

Standardno odstupanje zatvaranja trokuta, sukladno formuli Ferrero (Čubranić 1974)

$$s_{\rm P} = \sqrt{\frac{\omega^{\rm t}\omega}{\rm t}} = \sqrt{\frac{74.56}{13}} = 2.40^{"},$$
 (42)

gdje je t - broj trokuta.

4.1.2. Primarna računska obrada duljina

Primarnom računskom obradom neposrednih podataka izmjere duljina sadržanih u prilogu 1, tablica 1.2.1. – 1.2.6., a koje su dobivene dvostrukim mjerenjem s šest ponavljanja izmjere svake duljine u istom smjeru, potrebno je odrediti jednoznačne vrijednosti duljina i pripadne kriterije točnosti. Primarna računska obrada obavljena je primjenom izjednačenja dvostrukih mjerenja (Rožić 2007). Zbog pojednostavljenja računske obrade, obzirom da je sa svake na svaku točku geodetske mreže obavljeno ukupno šest mjerenja, računate su odgovarajuće srednje vrijednosti, prilog 5.1., tablica 5.1.

Najvjerojatnija vrijednost mjerene duljine u slučaju dvostrukih mjerenja dobiva se izrazom (aritmetička sredina)

$$\overline{\mathbf{D}} = \frac{1}{2} \left(\overrightarrow{\mathbf{D}} + \overleftarrow{\mathbf{D}} \right), \tag{43}$$

gdje je:

D - mjerena duljina s prve točke na drugu točku (mjerenje "naprijed"),

D - mjerena duljina s druge točke na prvu točku (mjerenje "natrag").

Kriterij ocjene točnosti mjerenja jest

-referentno standardno odstupanje:

$$s_{o} = \sqrt{\frac{d^{t} \mathbf{P} d}{2 n_{d}}},$$
(44)

gdje je:

d - vektor razlika dvostrukih mjerenja (nesuglasice),

P – matrica težina dvostrukih mjerenja,

2 n – ukupan broj mjerenja, (n_d – broj dvostrukih mjerenja).

Treba naglasiti da su u izrazu (44) uvedene težine duljina, obzirom da se referentno standardno odstupanje određuje na temelju niza dvostrukih mjerenja različitih točnosti, gdje su težine duljina u pojedinim dvostrukim mjerenjima definirane izrazom

$$p_i = \frac{1}{\overline{D}_i}$$
, (i = 1, 2,...n_d), (45)

- standardno odstupanje pojedinog dvostrukog mjerenja

$$s_i = \frac{s_o}{\sqrt{p_i}}, (i = 1, 2, ... n_d),$$
 (46)

- standardno odstupanje izjednačene duljine (aritmetička sredina duljine)

$$s_{x_i} = \frac{s_i}{\sqrt{2}}, (i = 1, 2, ... n_d),$$
 (47)

Rezultati računske obrade duljina predočeni su detaljno u prilogu 5, tablica 5.2. Objedinjeni rezultati računske obrade navedeni su u tablici 6, tj. izjednačene duljine \overline{D}_i , standardna odstupanja pojedinih dvostrukih mjerenja s_i i standardna odstupanja izjednačenih duljina s_{xi}, uz uvođenje odgovarajuće numeracije duljina sukladno sl. 13.

Oznaka	Sa stajališta	Na stajalište	– D _i m	s _i mm	s _{xi} mm
D ₁	P5	P2	809.9007	7.35	5.20
D ₂	P5	P1	913.8039	7.81	5.52
D ₃	P5	P11	1297.2273	9.31	6.58
D ₄	P4	172Z1	645.4802	6.56	4.64
D ₅	P4	P11	619.4832	6.43	4.55
D ₆	P4	P2	311.3211	4.56	3.22
D ₇	P4	P1	260.1753	4.17	2.95
D ₈	P11	P2	833.9885	7.46	5.28
D ₉	P11	P1	674.2777	6.71	4.74
D ₁₀	P11	172Z1	763.9231	7.14	5.05
D ₁₁	P2	172Z1	502.9735	5.79	4.10
D ₁₂	P2	P1	170.8467	3.38	2.39
D ₁₃	P1	172Z1	402.4411	5.18	3.67

Tablica 6. Izjednačene duljine i kriteriji točnosti

Referentno standardno odstupanje

$$s_o = \sqrt{\frac{d^t P d}{2n}} = \sqrt{\frac{1735.8506}{26}} = 8.17 \text{mm} / \text{km}.$$
 (48)

Na temelju referentnog standardnog odstupanja može se zaključiti da je realizirana točnost izmjere duljina nešto niža nego je to iskazano specifikacijom proizvoditelja za instrument Leica TC 1800 (1 mm + 2 ppm). Naime, postignuta točnost od približno 8 mm, sukladno činjenici da je kao referentna duljina uvedena duljina od 1 km, nije doslovno podudarna s iznosom od 3 mm određenim temeljem specifikacije proizvoditelja. Uočena pojavnost nije pretjerano zabrinjavajuća, obzirom da je izmjera obavljena u realnim terenskim uvjetima, koji obzirom na meteorološke uvjete nisu bili posve idealni (listopad). Osim toga, na točnost izmjere duljine je zasigurno utjecala

činjenica da između dijela točaka mreže postoji zamjetna visinska razvedenost na kratkim udaljenostima (strme vizure).

Na žalost, neposredni podaci izmjere kosih duljina nisu dostupni, pa se iskazana točnost ne odnosi na neposredne podatke izmjere, već na horizontalne duljine reducirane u ravninu Gauss-Krüger-ove projekcije.

Sl. 13. Geodetska mreža i numeracija duljina

U cilju analize nazočnosti grubih pogrešaka u rezultatima izmjere duljina obavljeno je računanje nesuglasica u uvjetnim jednadžbama čiji postav odgovara izjednačenju najjednostavnijih formi trilateracijskih mreža (centralni sustav, geodetski četverokut). Postav uvjetnih jednadžbi i računanje nesuglasica može se obaviti u svakom geodetskom četverokutu ili centralnom sustavu koji se identificira u mreži, uz preduvjet da su uistinu sve duljine mjerene. Uvjetne jednadžbe slijede iz postava uvjeta horizonta na točkama pola (Rožić 2007),

$$\omega = \sum_{i=1}^{3} \left(\arccos \frac{r_{i-1}^2 + r_i^2 - s_i^2}{2 r_{i-1} r_i} \right) - 360^\circ,$$
(49)

32

gdje je:

- nesuglasica,
- ri radijalne strane geodetske mreže,
- s_i obodne strane geodetske mreže.

Određivanje nesuglasica obavlja se uz uvođenje karaterističnih oznaka za radijalne i obodne strane u odnosu na odabir pola, zbog jednostavnijeg računanja. Kod centralnog sustava za pol se odabire središnja točka mreže, dok se kod geodetskog četverokuta za pol odabire točka koja je najudaljenija od dijagonala, sl. 14.

Sl. 14. Označavanje stranica i kutova u centralnom sustavu i geodetskom četverokutu

Računanje nesuglasica detaljno je predočeno u prilogu 6. Rezultati računanja nesuglasica objedinjeni su i predočeni u tablici 7.

Četverokut	Nesuglasica ω "
l.	-2.35
II.	-1.58
III.	-33.53
IV.	4.46
V.	-0.51
VI.	-13.30

Tablica	7	Nesuglasice	figura
rabiica	1.	i i cougiasico	ngura

Potrebno je ukazati na činjenicu da su nesuglasice uvjeta navedene u tablici 7, osim u mreži IV, dosljedno negativnog predznaka, što ukazuje na određene sistematske utjecaje sadržane u rezultatima izmjere duljina.

Također, iznos nesuglasica u mreži IV, a posebice u mreži III, je primjetno veći nego u ostalim mrežama što ukazuje na moguću prisutnost tzv. malih grubih pogrešaka
u nekim od mjerenih duljina. Međutim, detaljnija dijagnostika zbog nedostupnosti neposrednih podataka izmjere nije moguća.

Na temelju nesuglasica uvjetnih jednadžbi moguće je izračunati odgovarajuće standardno odstupanje po formuli Ferrero

$$s_{\rm D} = \sqrt{\frac{\omega^{\rm t} \, \omega}{\rm N}} = \sqrt{\frac{1329.32}{6}} = 14.89^{"},$$
 (50)

gdje je N broj geodetskih četverokuta i centralnih sustava.

Usprkos navedenom, standardno odstupanje izvedeno iz nesuglasice zatvaranja uvjeta horizonta logično se odnosi prema točnosti izvedenoj pomoću formule Ferrero, uz napomenu da modeli ocjene točnosti na bitno različit način obuhvaćaju povezanost mjerenja u geometrijske strukture. Kod formule Ferrero točnost se iskazuje na temelju nesuglasica figura definiranih za međusobno nevisne i geometrijski nepovezane trokutove, dok u drugom slučaju za trokutove geometrijski čvrsto povezane u elementarne forme trilateracijskih mreža (geodetski četverokut, centralni sustav).

4.2. Računska obrada mikro-triangulacijske mreže

Primarna računska obrada pravaca omogućuje obavljanje izjednačenja mikro triangulacijske mreže. Kao što je već predhodno rečeno, obzirom da je poznata samo približna orijentacija koordinatnog sustava, uputna je primjena singularnog izjednačenja posrednih mjerenja (Rožić 2007). Položaj točaka geodetske mreže određuje se isključivo temeljem presjeka pravaca. Izjednačenjem se određuju, na temelju n mjerenih pravaca L_i s definiranim težinama p_i, najvjerojatnije vrijednosti koordinata točaka geodetske mreže (nepoznanice) te kriteriji točnosti mjerenih veličina i nepoznanica. Izjednačenje je moguće obaviti samo kada je broj mjerenja (n) veći od broja nepoznanica (u), umanjenog za defekt datuma (d) (Rožić 2007), tj. samo kada postoje prekobrojna mjerenja (n_f)

$$n_f = n - (u - d) > 0$$
. (51)

U izjednačenju triangulacijske mreže tunela Sv. Rok, sl. 11, broj prekobrojnih mjerenja iznosi 18.

Kao važnije točke algoritma potrebno je istaknuti pravilno definiranje funkcija povezanosti mjerenja i nepoznanica u svrhu definiranja funkcijskog modela te definiranje težina mjerenja, u svrhu definiranja stohastičkog modela geodetske mreže. Posebnu pozornost zahtijeva linearizacija funkcija i postav jednadžbi popravaka te određivanje strukture matrice **G** neophodne za računanje pseudoinverzije. Kao funkcije povezanosti mjerenja i nepoznanica uvode se funkcije smjernog kuta, uz uvođenje nepoznanica kuta orijentacije na svim točkama mreže.

Primjenom singularnog izjednačenja posrednih mjerenja i metode najmanjih kvadrata za geodetsku mrežu predočenu na sl. 11, definiran je pripadni funkcijski model. Funkcije povezanosti mjerenja i nepoznanica su detaljno predočene u prilogu 7.1. Funkcijski model geodetske mreže određen je sustavom jednadžbi popravaka, izraz (2). Budući da se geodetska mreža izjednačava kao slobodna mreža (singularno izjednačenje) jednadžba popravka bilo kojeg mjerenog pravca, obzirom na približne koordinate točaka, u lineariziranoj formi ima oblik (Feil 1989)

$$v_i = -z + a_{ri} x_r + b_{ri} y_r + a_{ir} x_i + b_{ir} y_i - I_{ri},$$
 (52)

gdje je:

z - prikraćena vrijednost kuta orijentacije,

- a_{ri} koeficijent smjera,
- b_{ri} koeficijent smjera,
- air koeficijent smjera,
- b_{ir} koeficijent smjera,
- x prikraćena vrijednost nepoznanice \bar{x} ,
- y prikraćena vrijednost nepoznanice \overline{y} ,
- I prikraćena vrijednost mjerenja,
- r točka stajališta,
- i točka signala.

Linearizirane jednadžbe popravaka predočene su u prilogu 7.2. Sukladno izrazu (5) obavljeno je računanje približnih vrijednosti kutova orijentacije, a računanje je detaljno predočeno u prilogu 7.5, tablica 7.5.1. - 7.5.6. Iz jedndadžbe popravaka dane izrazom (52) potrebno je eliminirati prikraćenu vrijednost nepoznanice kuta orijentacije. Reduciranje nepoznanica kuta orijentacije obavljeno je Gauss-ovim postupkom.

Definiranje stohastičkog modela obavljeno je određivanjem težina mjerenja sukladno izrazu

$$p_i = \frac{k}{s_{x_i}^2},\tag{53}$$

gdje je:

k - faktor proporcionalnosti,

 s_{x}^{2} - standardno odstupanje mjerenog pravca.

Standardna odstupanje pravaca neophodna za određivanje težina navedene su u tablici 4. Za faktor proporcionalnosti k odabrana je vrijednost koja se podudara s kvadriranom vrijednošću najvećeg standardnog odstupanja pravca (k = $(1.19)^2$).

Približni smjerni kutovi, približne vrijednosti kutova orijentacije, koeficijenti smjera, prikraćena mjerenja i težine mjerenja predočeni su u prilogu 7.3., tablica 7.3.1.

Za određivanje pseudoinverzije neohodno je ispravno definiranje strukture matrice **G**, ovisno o defektu datuma funkcijskog modela. U varijanti mikro-triangulacijske mreže matrica **G**, dana izrazom (14), poprima oblik

	0.4082	0.0000	0.1144	- 0.0298	
	0.0000	0.4082	- 0.0298	- 0.1144	
	0.4082	0.0000	0.0817	- 0.1689	
	0.0000	0.4082	- 0.1689	- 0.0817	
	0.4082	0.0000	- 0.0975	0.0202	
	0.0000	0.4082	0.0202	0.0975	
$G = [g_{tx} g_{ty} g_{rz} g_m] =$	0.4082	0.0000	- 0.5569	- 0.3958	
	0.0000	0.4082	- 0.3958	0.5569	
	0.4082	0.0000	0.0165	0.5257	
	0.0000	0.4082	0.5257	- 0.0165	
	0.4082	0.0000	0.4418	0.0487	
	0.0000	0.4082	0.0487	- 0.4418	

Matrica **G** je određena pomoću reduciranih približnih vrijednosti koordinata točaka mreže u odnosu na njeno težište (prilog 7.4., tablica 7.4.1.).

Računska obrada obavljena je primjereno i ispravno što potvrđuju obavljene računske kontrole. Izjednačenjem su dobivene izjednačene vrijednosti mjerenja i nepoznanica. Izjednačene vrijednosti predočene su detaljno u prilogu 7.6. Izjednačene vrijednosti kuta orijentacije detaljno su predočene u tablici 7.6.1., izjednačena mjerenja, izjednačeni smjerni kut i definitivna kontrola izjednačenja, odnosno izjednačeni smjerni kutovi iz izjednačenih koordinata, objedinjeni su i predočeni u tablici 7.6.2. te izjednačene vrijednosti nepoznanica u tablici 7.6.3. Temeljem izjednačenja dobiveno je referentno standardno odstupanje

$$s_o = \sqrt{\frac{v^t P v}{n_f}} = \sqrt{\frac{149.51246}{18}} = 2.882 ".$$
 (54)

36

Može se zaključiti da je postignuta visoka točnost izmjere. Usporedba iznosa standardnog odstupanja iz formule Ferrero ($s_p = 2.40$ ") i referentnog standardnog odstupanja iz izjednačenja ukazuje na zamjetnu podudarnost. Razvidno je da se ocjena točnosti "a priori" i "a posteriori" podudara, što upućuje na činjenicu da mjerenja nisu opterećena sistematskim utjecajima te da je postignuta točnost sukladna korištenom instrumentariju i metodi izmjere.

Na temelju referetnog standardnog odstupanja izračunata su standardna odstupanja mjerenja i standardna odstupanja izjednačenih mjerenja. Objedinjeno su predočena u prilogu 7.7, tablica 7.7.1. Standardna odstupanja mjerenja i izjednačenih mjerenja kreću se u intervalu od 0.401" do 2.882" i primjereno su podudarna sa standardnim odstupanjem određenim na temelju stajališnih izjednačenja pravaca koja se kreću u intervalu od 0.47" do 2.06". Stoga, moguće je i na temelju ove podudarnosti zaključiti da je postignuta visoka kvaliteta izmjere.

Kvaliteta položaja točaka mreže iskazana je lokalnim i globalnim kriterijima točnosti. Obavljeno je računanje standardnih odstupanja položaja točaka u smjerovima koordinatnih osi koordinatnog sustava i elipsi položajne točnosti (Helmertove elipse), a postignute položajne točnosti predočene su u tablici 8. Elipse položajne točnosti grafički su prikazane na sl. 15.

Točka	s _x s _y	s _x A s _y B		Θ			
	m	m	٥	ı	11		
	0.0025	0.0032	407	24	50.40		
PI	0.0024	0.0013	137	34	50.15		
Do	0.0039	0.0048	140	4.4	00.40		
P2	0.0031	0.0015	143	44	00.13		
D4	0.0026	0.0049	07	10	36.41		
P4	0.0049	0.0026	87	12	30.41		
DE	0.0035	0.0073	444	24	07.77		
Po	0.0067	0.0018	114	34	21.11		
D14	0.0059	0.0061	45	00	22.45		
PTT	0.0025	0.0020	15	02	33.15		
47074	0.0028	0.0044	00	20	22.40		
17221	0.0043	0.0028	82	33	32.40		

Tablica 8. Položajna točnost koordinata i parametri Helmertovih elipsi

SI. 15. Elipse položajne točnosti

Položajna točnost točaka geodetske mreže je na milimetarskoj razini. Standardna odstupanja koordinata svih točaka mreže su manja od 6.7 mm, dok je najniža položajna točnost točke poprimila iznos od 7.3 mm. Oba su navedena pokazatelja vezana uz točku P5 i nisu posve iznenađujuća obzirom na njen relativni položaj u odnosu na ostale točke mreže i kvalitetu presjeka pravaca kojim je određen njen položaj.

Uzevši u cjelini može se konstatirati da je postignuta visoka točnost pozicioniranja točaka mreže.

Helmertove elipse čiji su parametri sadržani u tablici 8, tzv. apsolutne elipse položajne točnosti određuju položajnu točnost svake točke u proizvoljnom smjeru. Grafički su prikazane na skici geodetske mreže u povoljnom mjerilu, sl. 15. Obzirom na činjenicu da je mreža realizirana mjerenjem pravaca položajna točnost točaka je logički distribuirana. Naime, položajna točnost točaka mreže je zamjetno viša u smjerovima približno okomitim na smjer pravaca kojima su određeni presjeci. Navedeno je posve razvidno, a posebice je naglašeno na rubnim točkama mreže (P5, P11, 172Z1).

Također, obzirom na veličinu i orijentaciju elipsi pogrešaka može se utvrditi da je položajna točnost svih točaka mreže prilično ujednačena te da nisu razvidni nikakvi sistematski utjecaji.

Osim apsolutnih elipsi pogrešaka obavljeno je i određivanje tzv. relativnih elipsi položajne točnosti. One iskazuju uzajamnu položajnu točnost dviju točaka mreže, koje su međusobno vezane mjerenjem. Parametri relativnih elipsi predočeni su u tablici 9, a elipse su grafički prikazane na sl. 16.

Relativna položajna točnost točaka mreže, obzirom da minimalna položajna točnost iznosi 11.6 mm, primjerena je i prihvatljiva obzirom na točnost izmjere pravaca. Relativne elipse su predočene na skici geodetske mreže, u povoljnom mjerilu, uz pridruživanje središnjoj točki spojnice između parova točaka. Na temelju relativnih elipsi pogrešaka razvidna je i logična činjenica da je za pretežan broj realiziranih obostrano mjerenih pravaca relativna položajna točnost najviša u smjeru okomitom na pravce, a najniža u smjeru pravaca. Od navedenog izrazito odstupaju elipse vezane uz točku P4-P11 i P5-P11.

Izračunati je karakteristični globalni kriterij položajne točnosti formulom Mittermayera, izraz (34), odnosno standardno odstupanje položaja točke koje iznosi 5.7 mm. Položajna točnost je prihvatljiva i ukazuje na visoku položajnu točnost.

39

Točka	A B		Θ				
	m	A Θ m \circ ' '' 0031 159 34 40.177 0046 65 24 52.957 0010 121 59 49.775 0026 121 59 49.775 0026 103 21 42.359 0028 103 21 42.359 0024 103 21 42.359 0025 126 06 18.310 0025 126 06 18.310 0030 173 11 01.158 0030 173 11 01.158 0051 39 21 54.898 0116 107 40 09.967 0043 107 40 09.967 0036 85 22 07.647 0036 71 58 15.079 0031 20 12 56.501					
	0.0031	150	24	40 477			
FI-FZ	0.0010	159	34	40.177			
	0.0046	65	24	52 057			
F1-F4	0.0018	05	24	52.957			
D1 D5	0.0100	101	50	40 775			
FT-F5	0.0026	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	0.0081	° ' '' 159 34 40.177 65 24 52.957 121 59 49.775 178 52 19.822 103 21 42.359 126 06 18.310 1173 11 01.158 112 15 24.890 39 21 54.898 107 40 09.967 85 22 07.647 71 58 15.079 29 13 56.591	10 922				
FI-FII	0.0028	170	52	19.022			
D1 17071	0.0065	102	21	42 250			
FI-1/221	0.0024	103	21	42.309			
	0.0115	100	06	10.210			
F2 - F3	0.0025	126 06		10.310			
D2 D11	0.0094	172	11	01 159			
FZ - F I I	0.0030	175	11	01.150			
D2 17271	0.0076	110	15	24 800			
FZ - 17221	0.0023	112	15	24.090			
	0.0051	20	21	54 909			
FZ - F4	0.0020	0051 39 21 0020 39 21		54.090			
D4 - D11	0.0116	107	40	00.067			
F4-F11	0.0043	107 40 043		09.907			
D4 17071	0.0086	95	85 22 07.6				
F4-17221	0.0037	037 85 22		07.047			
D5 D11	0.0086	71	59	15 070			
F3-F11	0.0031	7 1	50	15.079			
P11 -	0.0091	20	10	56 E01			
172Z1	0.0047	29	13	20.291			

Tablica 9. Parametri relativnih elipsi

4.3. Računska obrada mikro-trilateracijske mreže

Na temelju rezultata primarne računske obrade duljina moguće je obaviti izjednačenje mikro-trilateracijske mreže. Računska obrada može se obaviti također primjenom algoritma singularnog izjednačenja posrednih mjerenja (Rožić 2007). Izjednačenjem se određuju, na temelju n mjerenih duljina D_i s definiranim težinama p_i, najvjerojatnije vrijednosti koordinata točaka geodetske mreže (nepoznanice) te kriteriji točnosti mjerenih veličina i nepoznanica. Izjednačenje je moguće obaviti samo kada postoje prekobrojna mjerenja, izraz (51). U trilateracijskoj mreži broj prekobrojnih mjerenja iznosi 4, uz napomenu da defekt datuma iznsi 3.

Primjenom singularnog izjednačenja posrednih mjerenja i metode najmanjih kvadrata za geodetsku mrežu predočenu na sl. 13, definira se funkcijski model. Kao funkcije povezanosti mjerenja i nepoznanica uvode su funkcije za duljinu u ravninskom koordinatnom sustavu. Funkcije povezanosti mjerenja i nepoznanica predočene su u prilogu 8.1. Funkcijski dio matmatičkog modela mreže određen je sustavom jednadžbi popravaka, izraz 2, a jednadžba popravka bilo koje mjerene duljine u lineariziranoj formi ima oblik (Feil 1989):

$$v_{i} = -a_{ri} x_{r} - b_{ri} y_{r} + a_{ir} x_{i} + b_{ir} y_{i} - I_{ri},$$
(55)

gdje je:

- a koeficijent jednadžbe popravaka,
- b koeficijent jednadžbe popravaka,
- x prikraćena vrijednost nepoznanice u smjeru osi x,
- y prikraćena vrijednost nepoznanice u smjeru osi y,
- I prikraćena vrijednost mjerenja,
- r polazna tražena točka,
- i završna tražena točku.

Jednadžbe popravaka su detaljno predočene u prilogu 8.2.

Definiranje stohastičkog modela obavljeno je određivanjem težina mjerenja sukladno izrazu (53). Težine mjerenja određene su pomoću rezultata ocjene točnosti dobivenih primarnom računskom obradom duljina, (tablica 6), i faktora proporcionalnosti k čija se vrijednost podudara s kvadriranom vrijednošću najvećeg standardnog odstupanja mjerene duljine (k = $(6.58 \text{ mm})^2$). Težine mjerenja, zajedno s koeficijentima jednadžbi popravaka i prikraćenim mjerenjima predočene su u prilogu 8.3., tablica 8.3.1.

Matrica **G** dana izrazom (15) konkretizirana je sukladno iznosu defekta datuma, broju nepoznanica i približnim vrijednostima koordinata točaka mreže.

$$\mathbf{G} = [\mathbf{g}_{tx} \ \mathbf{g}_{ty} \ \mathbf{g}_{rz}] = \begin{bmatrix} 0.4082 & 0.0000 & 0.1144 \\ 0.0000 & 0.4082 & -0.0298 \\ 0.4082 & 0.0000 & 0.0817 \\ 0.0000 & 0.4082 & -0.1689 \\ 0.4082 & 0.0000 & -0.0975 \\ 0.0000 & 0.4082 & 0.0202 \\ 0.4082 & 0.0000 & -0.5569 \\ 0.0000 & 0.4082 & -0.3958 \\ 0.4082 & 0.0000 & 0.0165 \\ 0.0000 & 0.4082 & 0.5257 \\ 0.4082 & 0.0000 & 0.4418 \\ 0.0000 & 0.4082 & 0.0487 \end{bmatrix}$$

Matrica **G** je određena pomoću reduciranih približnih vrijednosti koordinata točaka mreže u odnosu na njeno težište (prilog 8.4, tablica 8.4.1.).

Računska obrada obavljena je primjereno i ispravno što potvrđuju obavljene računske kontrole. Izjednačenjem su dobivene izjednačene vrijednosti mjerenja i nepoznanica. Izjednačene vrijednosti predočene su detaljno u prilogu 8.5. Izjednačena mjerenja i definitivna kontrola izjednačenja, odnosno izjednačene duljine iz izjednačenih koordinata objedinjeno su predočene u tablici 8.5.1 te izjednačene vrijednosti nepoznanica u tablici 8.5.2.

Temeljem izjednačenja dobiveno je referentno standardno odstupanje

$$s_o = \sqrt{\frac{\mathbf{v}^t \mathbf{P} \mathbf{v}}{n_f}} = \sqrt{\frac{0.00009189}{4}} = 0.0048 \text{ m}.$$
 (56)

Na temelju referetnog standardnog odstupanja izračunata su standardna odstupanja mjerenja i standardna odstupanja izjednačenih mjerenja predočena u prilogu 8.6, tablica 8.6.1. Standardna odstupanja se kreću u intervalu od 1.6 mm do 4.8 mm. Poprimaju nešto povoljnije vrijednosti u usporedbi s "a priori" kriterijima dobivenim temeljem izjednačenja dvostrukih mjerenja koji se kreću u intervalu od 2.4 mm do 9.3 mm.

Također, obavljeno je računanje standardnih odstupanja položaja točke u smjerovima koordinatnih osi koordinatnog sustava i elipsi položajne točnosti

(Helmertove elipse). Položajne točnosti su predočene u tablici 10, a elipse položajne točnosti su grafički prikazane na sl. 17.

Točka	S _x S _y	A B	Θ				
	m	m	0	'	"		
D1	0.0019	0.0022	11	40	26.76		
FI	0.0018	0.0014	41	49	20.70		
50	0.0018	0.0025	61	10	45.00		
P2	0.0023	0.0015	01	10	43.22		
D4	0.0029	0.0030	176	00	06.49		
P4	0.0019	0.0019	170	00	06.49		
DE	0.0034	0.0036	24	21	50.10		
FD	0.0025	0.0021	24	31			
D11	0.0017	0.0031	107	06	23.50		
PII	0.0030	0.0016	107	06			
17071	0.0029	0.0029	2	10	04.02		
17221	0.0017	0.0017	2	10	04.03		

Tablica 10. Položajna točnost koordinata i parametri Helmertovih elipsi

Položajna točnost točaka geodetske mreže, obzirom na iznos minimalne položajne točnosti od 3.6 mm, primjerena je i sukladna točnosti izmjere duljina. Postignuta je visoka položajna točnost. Temeljem činjenice da su mjerene duljine (smjer minimalne položajne točnosti okomit je na smjer mjerenja duljine) položajna točnost točaka određena elipsama logički je distribuirana.

Obavljeno je računanje relativnih elipsi položajne točnosti, tablica 11. Elipse su grafički prikazane na sl. 18. Postignuta položajna točnost bilo kojih dviju točaka mreže koje su međusobno vezane mjerenjem, obzirom da minimalna položajna točnost iznosi 6.1 mm, primjerena je i prihvatljiva obzirom na točnost izmjere duljina.

Obavljeno je računanje karakterističnog globalnog kriterija položajne točnosti, odnosno standardno odstupanje položaja točke po formuli Mittermayera, izraz (34), koje iznosi 3.4 mm.

SI. 17. Elipse položajne točnosti

Točka	A B	Θ				
	m	o	'	"		
	0.0028	70	FF	04.050		
PI-PZ	0.0016	13	55	21.009		
	0.0035	164	54	20.220		
F 1-F 4	0.0019	104	54	29.220		
D1_D5	0.0052	35	25	13 170		
FT-FJ	0.0028	55	25	13.170		
D1_D11	0.0044	88	10	23 211		
	0.0024	0024 88 10		23.211		
D1 17071	0.0045	10	27	10.946		
P1-17221	0.0020	10	21	40.040		
D2 D5	0.0057	20	50	12 092		
FZ-F3	0.0027	39	50	10.000		
D2-D11	0.0046	88	05	37 100		
FZ-FII	0.0023	00	05	57.199		
D0 17071	0.0046	20	59	15 009		
FZ-17221	0.0024	20	50	15.906		
	0.0036	125	21	20 5 4 2		
F 2-F 4	0.0021	155	51	30.543		
D/ D11	0.0061	17	22	12 002		
	0.0035	17	52	13.995		
D/ 17071	0.0052	2	11	11 511		
F4-17221	0.0024	2	41	41.511		
D5 D11	0.0048	160	26	20 704		
F0-F11	0.0024	100	20	20.794		
D11 17074	0.0045	125	50	00 750		
F11-1/221	0.0035	130	50	09.759		

Tablica 11. Parametri relativnih elipsi

4.4. Računska obrada mikro-triangulateracijske mreže

Obzirom da je geodetska mreža neovisno realizirana izmjerom pravaca i duljina, moguće je obaviti pozicioniranje točaka i izjednačenje geodetske mreže njihovom zajedničkom računskom obradom. Računska obrada može se obaviti primjenom algoritma singularnog izjednačenja posrednih mjerenja (Rožić 2007).

Primjenom singularnog izjednačenja posrednih mjerenja i metode najmanjih kvadrata za geodetsku mrežu predočenu na sl. 19, definira se funkcijski model. Obzirom na zajedničko izjednačenje kutnih (pravci) i linearnih (duljine) mjerenja kao funkcije povezanosti mjerenja i nepoznanica uvode su funkcije smjernog kuta i funkcije za duljinu u ravninskom koordinatnom sustavu. Funkcije povezanosti mjerenja i nepoznanica predočene su u prilogu 7.1 i prilogu 8.1. Funkcijski dio algoritma određuje sustav jednadžbi popravaka, izraz 2. Jednadžba popravka bilo kojeg mjerenog pravca u lineariziranoj formi ima oblik sukladan izrazu (52) i jednadžba popravka bilo koje mjerene duljine u lineariziranoj formi poprima oblik sukladan izrazu (55). Linearizirane jednadžbe popravaka predočene su u prilogu 7.2. i prilogu 8.2.

Sl. 19. Geodetska mreža realizirana izmjerom pravaca i duljina

U izjednačenju kombinirane mreže obavlja se zajedničko izjednačenje kutnih (pravci) i linearnih (duljine) mjerenja. Kako bi se dimenzionalno različita mjerenja mogla zajednički izjednačiti potrebno je obaviti homogenizaciju težina mjerenja, odnosno potrebno je pravilno odrediti i pridružiti težine pripadnim kutnim i linearnim mjerenjima (Rožić 2007). Težine svih kutnih mjerenja određuju se izrazom

$$\mathsf{p}_{\mathsf{k}} = \frac{\mathsf{k}_{\mathsf{k}}}{\mathsf{s}^{2}_{\mathsf{x}_{\mathsf{i}}}},\tag{57}$$

gdje su standardna odstupanja pravaca s_{xi} preuzeta iz tablice 4. Faktor proporcionalnosti k_k se podudara s kvadriranom vrijednošću najvećeg standardnog odstupanja, odnosno k = $(1.19)^2$. Težine mjerenja duljina definirane su izrazom

$$p_{d} = \frac{k_{k}}{s^{2}_{x_{i}}},$$
(58)

gdje su standardna odstupanja duljina s_{x_i} preuzeta iz tablice 6. Faktor proporcionalnosti k_k preuzet je iz definiranja težina kutnih mjerenja. Težine mjerenja zajedno s koeficijentima jednadžbi popravaka predočene su u prilogu 9.1, tablica 9.1.1.

Defekt datuma i stupnjevi slobode gibanja koordinatog sustava kombinirane mreže, prema tablici 3, jednaki su kao u trilateracijskoj mreži, pa je stoga struktura matrice **G** određena izrazom (15).

$$\mathbf{G} = [\mathbf{g}_{tx} \ \mathbf{g}_{ty} \ \mathbf{g}_{rz}] = \begin{bmatrix} 0.4082 & 0.0000 & 0.1144 \\ 0.0000 & 0.4082 & -0.0298 \\ 0.4082 & 0.0000 & 0.0817 \\ 0.0000 & 0.4082 & -0.1689 \\ 0.4082 & 0.0000 & -0.0975 \\ 0.0000 & 0.4082 & 0.0202 \\ 0.4082 & 0.0000 & -0.5569 \\ 0.0000 & 0.4082 & -0.3958 \\ 0.4082 & 0.0000 & 0.0165 \\ 0.0000 & 0.4082 & 0.5257 \\ 0.4082 & 0.0000 & 0.4418 \\ 0.0000 & 0.4082 & 0.0487 \end{bmatrix}$$

Matrica **G** je određena pomoću reduciranih približnih vrijednosti koordinata točaka mreže u odnosu na njeno težište (prilog 9.2, tablica 9.2.1.).

Računska obrada mjerenja obavljena je primjereno i ispravno što potvrđuju obavljene računske kontrole. Izjednačenjem su dobivene izjednačene vrijednosti mjerenja i nepoznanica. Izjednačene vrijednosti predočene su detaljno u prilogu 9.3. Izjednačena mjerenja, izjednačeni smjerni kutovi i definitivna kontrola izjednačenja, odnosno izjednačeni smjerni kutovi iz izjednačenih koordinata, objedinjeni su i predočeni u tablici 9.3.1., izjednačena mjerenja duljina i definitivna kontrola, odnosno izjednačene duljina iz izjednačenih koordinata, u tablici 9.3.2. Izjednačene vrijednosti nepoznanica predočene su u tablici 9.3.3.

Temeljem izjednačenja dobiveno je referentno standardno odstupanje

$$s_o = \sqrt{\frac{\mathbf{v}^t \mathbf{P} \mathbf{v}}{n_f}} = \sqrt{\frac{160.60526}{30}} = 2.314$$
 (59)

Na temelju referetnog standardnog odstupanja izračunata su standardna odstupanja mjerenja i standardna odstupanja izjednačenih mjerenja. Predočena su u prilogu 8.6, tablica 8.6.1. Standardna odstupanja pravaca i izjednačenih pravaca kreću se u intervalu od 0.247" do 2.314". Usporedba s "a priori" kriterijima dobivenih temeljem stajališnog izjednačenja, koji se kreću u intervalu od 0.47" do 2.06", ukazuje na primjerenu podudarnost. Temeljem tih kriterija razvidno je da je postignuta visoka kvaliteta izmjere pravaca. Standardna odstupanja duljina i izjednačenih duljina kreću se u intervalu od 1.8 mm do 12.8 mm. Usporedba s "a priori" kriterijima točnostima dobivenim temeljem izjednačenja dvostrukih mjerenja, koji se kreću u intervalu od 2.4 mm do 9.3 mm, također upućuje na zadovoljavajuće suglasje.

Kao i u predhodnim varijantama izjednačenja izračunati su lokalni kriteriji položajne točnosti, tj. standardna odstupanja položaja točaka u smjeru x i y osi koordinatnog sustava i parametri Helmertovih elipsi. Postignute položajne točnosti predočene su u tablici 12, a elipse položajne točnosti grafički su prikazane na sl. 20.

Točka	S _x S _y	A B	Θ				
	m	m	o	'	"		
D1	0.0013	0.0015	126	52	11.02		
	0.0014	0.0011	120	55	11.95		
D 2	0.0016	0.0018	128	15	39.39		
ΓZ	0.0015	0.0013	130	15			
D4	0.0016	0.0023	64	02	20.74		
Г4	0.0021	0.0014	04	02			
P5	0.0029	0.0051	120	41	12.49		

Tablica 12. Položajna točnost koordinata i parametri Helmertovih elipsi

	0.0044	0.0015				
D11	0.0032	0.0032	4	15	<u> </u>	
FII	0.0016	0.0016	4	15	22.21	
17071	0.0018	0.0029	111	24	04.09	
17221	0.0027	0.0016		24	24.20	

Postignuta položajna točnost točaka geodetske mreže, obzirom na iznos minimalne položajne točnosti od 5.1 mm, primjerena je i sukladna točnosti izmjeri pravaca i duljina. Može se zaključiti da je postignuta visoka položajna točnost. Elipse položajne točnosti grafički su prikazane u povoljnom mjerilu, sl.20.

Točka	A B		Θ				
	m	o	'	"			
D4 D2	0.0018	100	20	00 504			
P1-P2	0.0007	103	20	09.534			
	0.0026	64	07	11 100			
P1-P4	0.0014	04	21	11.120			
D1 D5	0.0062	120	02	26.206			
F1-F5	0.0020	120	02	20.390			
	0.0039	6	22	06 720			
FI-FII	0.0022	0	33	00.720			
D1 17071	0.0033	2 3 114 24		55 24G			
P1-1/221	0.0017	114	24	55.540			
D2 D5	0.0063	110	26	00.004			
P2-P5	0.0021	110	20	09.004			
D2 D11	0.0042	2	01	11 201			
F2-F11	0.0023	2	01	11.591			
D0 17071	0.0036	110	24	0E 47E			
P2-1/221	0.0017	119	24	23.475			
D2 D4	0.0028	4.4	47	27 751			
P2-P4	0.0014	44	47	37.751			
	0.0061	115	10	45 621			
F4-F11	0.0031	115	12	45.651			
D4 17071	0.0038	01	25	00 502			
F4-17221	0.0027	91	55	09.502			
D5 D11	0.0063	124	12	02 221			
FJ-FII	0.0032	134	43	03.321			
D11 17071	0.0043	21	07	40.27			
	0.0032	21	07	49.27			

Tablica 13. Parametri relativnih elipsi položajne točnosti

SI. 20. Elipse položajne točnosti

SI. 21. Relativne elipse položajne točnosti

Obavljeno je i računanje relativnih elipsi položajne točnosti, tablica 13. Elipse su prikazane na sl. 21. Postignuta položajna točnost bilo kojih dviju točaka mreže koje su međusobno vezane mjerenjem, obzirom da minimalna položajna točnost iznosi 6.3 mm, primjerena je i prihvatljiva obzirom na točnost izmjere pravaca i duljina.

Obavljeno je računanje karakterističnog globalnog kriterija položajne točnosti po formuli Mittermayera, izraz (34), odnosno standardno odstupanje položaja točke koje iznosi 3.3 mm.

5. Usporedba i analiza položajne točnosti

Sukladno rezultatima računske obrade geodetske mreže tunela Sv. Rok koja je obavljena u tri karakteristične i međusobno neovisne varijante:

- matematičkim modeliranjem mreže i računskom obradom mikro-triangulacijske mreže (pravci),

- matematičkim modeliranjem mreže i računskom obradom mikro-trilateracijske mreže (duljine),

- matematičkim modeliranjem mreže i računskom obradom mikro-triangulateracijske mreže (pravci i duljine),

moguće je obaviti komparativnu usporedbu i analizu postignute položajne točnosti. Kriteriji položajne točnosti su od presudnog značaja za ispunjenje svrhe i namjene mreže, odnosno za određivanje elemenata za proboj tunela. Kriteriji na temelju kojih je moguće obaviti usporedbu položajne točnosti su položajna točnost točaka mreže izražena standardnim odstupanjem koordinata te apsolutne i relativne elipse položajne točnosti, odnosno standardno odstupanje položaja točaka po Mittermayeru (Mittermayer 1972). Kao što je predhodno već navedeno reprezentativno standardno odstupanje položaja točaka mreže, kao jedan od temeljnih globalnih kriterija položajne točnosti točaka mreže, računa se na temelju izraza (Mittermayer 1972)

$$s_{rx} = s_o \sqrt{\frac{\text{trag } \mathbf{Q}_{xx}}{r}}, \tag{60}$$

gdje je r broj točaka u mreži.

Vrijednosti ovog standardnog odstupanja, određene u sve tri varijante izjednačenja, predočene su u tablici 14.

MREŽA	S _{rx}
MIKRO-TRIANGULACIJSKA	0.0057 m
MIKRO-TRILATERACIJSKA	0.0034 m
MIKRO-TRIANGULATERACIJSKA	0.0033 m

Tablica 14. Standardno odstupanje položaja točaka

Na temelju usporedbe, vidljivo je da je u sve tri varijante realizacije geodetske mreže postignuta primjerena položajna točnost te da svaka od navedenih varijanti može poslužiti kao geodetska osnova za izvedbu tunela. Ipak, gledano numerički najniža je položajna točnost dobivena u varijanti izvedbe triangulacijske mreže, dok su točnosti dobivene u varijanti trilateracijske i triangulateracijske mreže posve podudarne.

Standardna odstupanja koordinata točaka mreže i elementi tzv. apsolutnih elipsi položajne točnosti geodetske mreže, iz sve tri varijante, usporedno su predočeni u tablici 15. Elipse su grafički prikazane na sl. 22. Iz usporedbe elipsi položajne točnosti i njihovog grafičkog prikaza vidljivo je da su mikro-trilateracijska i mikro-triangulateracijska mreža u pogledu kvalitete pozicioniranja točaka geodetske mreže vrlo podudarne, uz napomenu da je distribucija položajne točnosti djelomice različita.

Elementi tzv. relativnih elipsi položajne točnosti geodetske mreže iz sve tri varijante predočeni su u tablici 16, a elipse prikazane na sl. 23. Iz usmjerenja i veličine parametara apsolutnih i relativnih elipsi razvidno je da realizirana mreža nije niti izotropna, niti homogena jer položajna točnost varira. Međutim, pojavnost te činjenice posve je uobičajna i sukladna iskustvu empirijske realizacije geodetskih mreža, što više iskazana nehomogenost relativne položajne točnosti je pokazatelj koji ukazuje da ne postoje znatniji sistematski utjecaji.

	W	KROTRIAN MR	IGULAC EŽA	RASUI		Σ	IIKROTRIL MF	ATERAC REŽA	SHJSKA	_	x	OMBINIR	ANA N	AREŽ4	
Točka	s, v	A B		O		s, s,	AB		O		s s	A B		0	
	ε	ε	0	-	=	ε	E	٥	-	=	ε	E	0	-	=
č	0.0025	0.0032	101	2	50 10	0.0019	0.0022		0	97 90	0.0013	0.0015	901	5	00 77
-	0.0024	0.0013	101	5	00.00	0.0018	0.0014	+	4 V	20.02	0.0014	0.0011	071	°.	08.11
ć	0.0039	0.0048	140		c1 00	0.0018	0.0015	5	6	15 00	0.0016	0.0018	001	u T	00.00
	0.0031	0.0015		1	c1.00	0.0023	0.0025	0	<u>o</u>	77.04	0.0015	0.0013	000	2	39.39
č	0.0026	0.0049	07	ć	26.44	0.0029	0.0019	176	5	00 90	0.0016	0.0023	, e	ξ	
4	0.0049	0.0026	0	2	14.00	0.0019	0.0030	0/1	3	00.43	0.0021	0.0014	0	70	20.74
20	0.0035	0.0073		r c	27 70	0.0034	0.0021	Č	6	50.40	0.0029	0.0051	001	11	
	0.0067	0.0018	± -	5	11.17	0.0025	0.0036	74	0	01.00	0.0044	0.0015	170	+	12.43
2	0.0059	0.0061	7	Ę	00 1E	0.0017	0.0031	107	90	22 60	0.0032	0.0032		1 5	20 00
	0.0025	0.0020	2	7 N	00.00	0.0030	0.0016	101	8	00.02	0.0016	0.0016	t	2	17.77
17071	0.0028	0.0044	CO	22	07 00	0.0029	0.0029	ſ	0	0100	0.0018	0.0029	7 7 7	۲c	
1771	0.0043	0.0028	70	ŝ	04.70	0.0017	0.0017	4	2	0.40	0.0027	0.0016	-	7 4	24.20

Tablica 15. Položajna točnost koordinata i parametri elipsi

SI. 22. Elipse položajne točnosti

_	MIKRO-	TRIAN MRI	IGULA EŽA	CIJSKA	MIKRO	-TRILA MRI	TERA EŽA	CIJSKA	TRIAN	MIKRO- TRIANGULATERACIJSKA MREŽA			
Točke	A B		Θ		A B		Θ		A B		Θ		
	m	0	ı		m	o	1		m	0	ı	"	
P1-P2	0.0031	159	34	40 177	0.0028	73	55	21 859	0.0018	163	28	09 534	
	0.0010	100	0-1	40.177	0.0016	10	00	21.000	0.0007	100	20	00.004	
P1-P4	0.0046	65	24	52 957	0.0035	164	54	29 220	0.0026	64	27	11 126	
	0.0018	00	27	02.007	0.0019	104	54	20.220	0.0014	04	21	11.120	
P1-P5	0.0100	121	59	49 775	0.0052	35	25	13 170	0.0062	120	02	26 396	
11-13	0.0026	121	55	43.773	0.0028	- 55	25	13.170	0.0020	120	02	20.330	
P1-	0.0081	178	52	10,822	0.0044	88	10	23 211	0.0039	6	33	06 720	
P11	0.0028	170	52	19.022	0.0024	00	10	20.211	0.0022	0	55	00.720	
P1-	0.0065	103	21	12 350	0.0045	13	27	40.846	0.0033	11/	24	55 346	
172Z1	0.0024	103	21	42.359	0.0020	15	21	40.840	0.0017	114	24	55.540	
D2 D5	0.0115	106	06	19 210	0.0057	20	50	42 092	0.0063	110	26	00.004	
F2-F3	0.0025	120	00	10.310	0.0027	39	50	43.065	0.0021	110	20	09.004	
P2-	0.0094	172	11	01 159	0.0046	00	05	27 100	0.0042	2	01	11 201	
P11	0.0030	175	11	01.156	0.0023	00	05	37.199	0.0023	2	01	11.591	
P2-	0.0076	110	45	24.000	0.0046		50	45.000	0.0036	110	24	05 475	
172Z1	0.0023	112	15	24.690	0.0024	20	90	15.906	0.0017	119	24	20.470	
	0.0051	20	04	54.000	0.0036	405	04	20 5 42	0.0028	4.4	47	07 754	
P2-P4	0.0020	39	21	54.696	0.0021	135	31	30.543	0.0014	44	47	37.751	
P4-	0.0116	107	40	00.067	0.0061	17	22	12.002	0.0061	115	10	45 604	
P11	0.0043	107	40	09.907	0.0035	17	32	13.995	0.0031	115	12	45.651	
P4-	0.0086	05	22	07.647	0.0052	0	44	A1 E11	0.0038	01	25	00 500	
172Z1	0.0037	60	22	07.647	0.0024	2	41	41.511	0.0027	91	ათ	09.502	
P5-	0.0086	74	50	45.070	0.0048	100	20	00.704	0.0063	104	40	02.004	
P11	0.0031		58	15.079	0.0024	001	20	20.794	0.0032	134	43	03.321	
P11-	0.0091	20	10	56 E01	0.0045	105	50	00.750	0.0043	24	07	40.07	
172Z1	0.0047	29	13	20.291	0.0035	135	50	09.759	0.0032	21	07	49.27	

Tablica 16. Parametri relativnih elipsi položajne točnosti

SI. 23. Relativne elipse položajne točnosti

6. Zaključak

Na temelju dostupnih podataka neposredne izmjere pravaca i duljina uspješno je realizirana geodetska mreža na sjevernom portalu tunela Sv. Rok u tri međusobno neovisne varijante, tj. u varijanti triangulacijske mreže (pravci), varijanti trilateracijske mreže (duljine) i varijanti kombinirane, odnosno triangulateracijske mreže (pravci i duljine). Svaka pojedina varijanta obuhvatila je definiranje referentnog koordinatnog sustava mreže, u kojem je određen položaj točaka mreže te je obavljeno određivanje izjednačenih mjerenja i pripadnih kriterija točnosti. Obzirom na činjenicu da su u sve tri varijante realizirane uz tzv. optimalni koordinatni sustav, podaci položaja točaka i pripadne položajne točnosti su međusobno usporedivi.

U sklopu primarne računske obrade neposrednih podataka izmjere pravaca i duljina dobiveni su jasni pokazatelji o postizanju visoke točnosti izmjere, koja je primjerena metodologiji izmjere, korištenom instrumentariju i stručnim načelima izvedbe takve vrste geodetskih radova. Analiza postignutih točnosti "a priori" i ispitivanje nazočnosti grubih i sistematskih pogrešaka mjerenja ukazali su na visoku točnost izmjere i činjenicu da se ne mogu uočiti nikakvi značajniji sistematski utjecaji, niti grube pogreške. Jedina iznimka je pojavnost dvije po iznosu nešto veće nesuglasice pri zatvaranju uvjeta horizonta u slučaju izmjere duljina. Navedena pojavnost sama po sebi ne mora ukazivati na pojavu tzv. male grube pogreške u jednoj ili više mjerenih duljina, jer je u empirijskim situacijama redovita pojavnost da se u jednom ili nekoliko uvjeta pojave nesuglasice koje su nešto većeg iznosa od ostalih. Također, treba naglasiti da je točnost izmjere duljina obavljena s nešto nižom točnošću nego to navodi proizvoditelj instrumentarija koji je korišten pri izmjeri. Ova pojavnost također sama po sebi nije pretjerano zabrinjavajuća i ne ukazuje na nekvalitetu izmjere duljina, jer redovita je pojava da su podaci proizvoditelja o točnosti izmjere navedeni u odnosu na podatke dobivene u kontroliranim laboratorijskim uvjetima. Visoka točnost izmjere pravaca i duljina te odsustvo sistematskih i grubih pogrešaka prva je i najvažnija pretpostavka postizanja primjerene položajne točnosti točaka geodetske mreže, jer je položajna točnost točaka funkcija točnosti izmjere.

Na temelju, usporedbe i analize položajne točnosti točaka mreže, postignute u sve tri specifične varijante, može se jasno zaključiti da je točnost primjereno podudarna i praktički istog reda veličine, odnosno da nisu zamjetne nikakve signifikantne razlike. Drugim riječima, svaka od predočenih varijanti mreže mogla bi se podjednako

učinkovito iskoristiti kao realizacija geodetske mreže u svrhu izvedbe radova proboja tunela Sv. Rok. Na navedeno ukazuju iznosi standardnih odstupanja položaja točaka po Mittermayeru, kao jedan od relevantnih globalnih kriterija položajne točnosti, odnosno standardna odstupanja položaja točaka, elementi apsolutnih i relativnih elipsi pogrešaka, kao relevantni lokalni kriteriji položajne točnosti.

Ipak, na numeričkoj razini, a nasuprot očekivanju, položajna točnost točaka mreže je najniža u varijanti izvedbe triangulacijske mreže. Ova je pojavnost posebice iznenađujuća ukoliko se u obzir uzme ocjena točnosti izmjere pravaca "a priori" koja je uistinu poprimila naglašeno visoku razinu. Također, pokazuje se da varijante realizacije trilateracijske i triangulateracijske mreže daju praktički posve podudarne pokazatelje položajne točnosti, uz napomenu da je zbog karaktera mjerenja na pojedinim točkama mreže razvidna njena različita distribucija u ravninskom koordinatnom sustavu. U sve tri varijante, veličine i distribucije položajne točnosti točaka mreže, određene apsolutnim i relativnim elipsama pogrešaka, ukazuju na nenazočnost sistematskih utjecaja u podacima izmjere.

Poopćenjem rezultata točnosti pozicioniranja iz konkretnog primjera geodetske mreže tunela Sv. Rok na ostale geodetske mreže posebnih namjena može se nedvosmisleno i jasno zaključiti da točnost pozicioniranja pojedinih točaka mreže, odnosno mreže u cjelini, primarno ovisi o točnosti izmjere. Ukoliko se ista mreža realizira samo izmjerom pravaca, samo izmjerom duljina ili izmjerom pravaca i duljina trebala bi se postići položajna točnost koja je načelno gledano istog reda veličina. Pri tomu, temeljni preduvjet je primjerena točnost izmjere, stručna izvedba svih geodetskih radova od stabilizacije, odabira instrumentarija, odabira metodologije izmjere i redukcije izvornih mjerenja, a u svrhu eliminiranja grubih i sistematskih pogrešaka. Ipak, kao što je to bio slučaj pri izvornoj računskoj obradi podataka izmjere i realizaciji geodetske mreže tunela Sv. Rok, određenu prednost bi trebalo dati realizaciji triangulateracijske mreže. Razlog je vezan ne toliko uz pokazatelje položajne točnosti, već primarno uz svojstvo pouzdanosti mreže, odnosno mogućnost analize i identifikacije grubih i tzv. malih grubih pogrešaka mjerenja. U tom kontekstu vrlo je zanimljivo ukazati na pojavnost u slučaju mreže Sv. Rok, gdje je praktički u varijanti trilateracijske i triangulateracijske mreže postignuta praktički istovjetna položajna točnost, ali uz bitno različitu razinu pouzdanosti. Naime, u varijanti trilateracijske mreže bilo je identificirano samo 4, a u varijati triangulateracijske mreže 30 prekobrojnih mjerenja.

Također, ne treba zaboraviti i činjenicu da je položajna točnost točaka mreže i njena položajna distribucija ovisna o obliku i pravilnosti geometrijske konfiguracije mreže. U konkretnom slučaju, a bez obzira na varijantu realizacije mreže, geometrijske konfiguracije bile su podudarne.

Zahvala

Zahvaljujem mentoru prof. dr. sc. Neviu Rožiću na motivaciji, iskazanom strpljenju, vodstvu, stručnim savjetima i svim ostalim savjetima bilo vezano uz izradu rada ili općenito vezano uz geodetsku struku.

Zahvaljujem prijateljima, a posebice svojoj djevojci Antoniji Katić, na moralnoj podršci i pomoći.

Na kraju, želim zahvaliti roditeljima na podršci koja ni u jednom trenutku nije prestala, na savjetima i linijama vodiljama da postanem osoba kakva sam danas te što mi omogućuju studiranje.

Literatura:

Čubranić, N. (1974): Viša geodezija 1. Kućna tiskara Sveučilišta u Zagrebu, Zagreb. Feil, L. (1989): Teorija pogrešaka i račun izjednačenja - prvi dio. Birotehnika, Zagreb. Feil, L. (1990): Teorija pogrešaka i račun izjednačenja - drugi dio. Birotehnika, Zagreb. Klak, S., Rožić, N. (1997): Geodetska osnova tunela Sv. Rok - II.faza. Zavod za fotogrametriju d.d., Zagreb.

Macarol, S. (1961): Praktična geodezija. Tehnička knjiga, Zagreb.

Mittermayer, E. (1972): A generalization of the least-square method for the adjustment of free network, *Bull. Geodesique*, 104, 139–157.

Novaković, G. (2009): Inženjerska geodetska osnova. Interna skripta za studente Geodetskog fakulteta Sveučilišta u Zagrebu, Zagreb.

Paar, R. (2006): Uspostava geodetske osnove za posebne namjene. Magistarski rad, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.

Rožić, N. (2007): Računska obrada geodetskih mjerenja. Kratis, Sveta Nedelja.

Rožić, N. (2008): Optimiranje geodetskih mreža. Interna skripta za studente

Rožić, N. (2009): Obrada i analiza geodetskih mjerenja. Interna skripta za studente Geodetskog fakulteta Sveučilišta u Zagrebu, Zagreb.

Smith, J. R. (1997): Introduction to Geodesy: The History and Concepts of Modern Geodesy. John Wiley & Sons, Inc, New York.

URL 1: Web stranica prof. dr. sc. Tomislava Bašića

http://www.geof.hr/~tbasic/cgi/DI&FG_uvod_2006.pdf (12.04.2010.)

URL 2: Web stranica prof. dr. sc. Zdravka Kapovića

http://www.geof.hr/~zkapovic/load/tuneli.pdf (12.04.2010.)

URL 3: Hrvatske autoceste d.o.o.

http://www.hac.hr/docs/brosure/brosura-tuneli.pdf (12.04.2010)

URL 4: GIS One Stop Services,

http://www.esrith.com/Support/document/TC1800_en.pdf (12.04.2010.)

URL 5: Geoservis - servis i trgovina d.o.o,

http://www.geoservis.si/instrumenti/leica/images/tc1800.jpg (12.04.2010.)

URL 6: Leica

http://www.leica-geosystems.com (12.04.2010.)

Sažetak

Ivan Topolovec

Analiza položajne točnosti triangulacijske, trilateracijske i kombinirane 2D geodetske mreže posebne namjene

Geodetska osnova u slučaju "zahtjevnih" i složenih građevinskih objekata uobičajno poprima formu geodetske mreže, a u slučaju gradnje tunela može se podijeliti na: nadzemnu i podzemnu. Nadzemna geodetska osnova uspostavljena radi gradnje tunela Sv. Rok sastoji se od dvije mikro-mreže i poligonometrijskog vlaka koji ih povezuje. Geodetska mreža na sjevernom portalu tunela Sv. Rok realizirana je neovisnom izmjerom pravaca i duljina. Iz dostupnih podataka izmjere moguće je obaviti pozicioniranje točaka geodetske mreže na tri neovisna načina: matematičkim modeliranjem mreže i računskom obradom mikro-triangulacijske mreže, matematičkim modeliranjem mreže i računskom obradom mikro-trilateracijske mreže, matematičkim modeliranjem mreže i računskom obradom mikro-trilateracijske mreže, to svrhu određivanja najkvalitetnijeg rješenja, kao temeljni kriterij, odabrana je položajna točnost. Analizirani su kriteriji položajne točnosti: standardno odstupanje položaja točke po formuli Mittermayera te elipse tzv. apsolutne i relativne položajne točnosti. Temeljem rezultata analize i usporedbe položajne točnosti, 2D mikro-mreža u formi triangulateracijske mreže pokazala se kao najkvalitetnije rješenje.

Ključne riječi: geodetska mreža, geodetsko pozicioniranje, položajna točnost, triangulateracijska mreža

Summary

Ivan Topolovec

The positional accuracy analaysis of the special purpose triangulation, trilateration and combined 2D geodetic network

Geodetic basis in case of demanding and complex buildings normally takes the form of geodetic networks, in the case of tunneling it can be divided into: aboveground and belowground. Aboveground geodetic basis established for building the tunnel Sv. Rok consists of two micro-networks and traverse which connecting them. Geodetic network on the north portal of tunnel Sv. Rok is realized by independent measuring of directions and distances. From available data of survey it is possible to do positioning of points of geodetic network in three independent ways: mathematical modeling of network and computational processing of micro-triangulation network, mathematical modeling of network and computational processing of micro-trilateration network and mathematical modeling of network and computational processing of microtriangulateration network. In order to determine the highest quality solution, as a fundamental criterion, positional accuracy was selected. The criteria for the positional accuracy were analyzed: standard deviation of the position of point by Mittermayer's formula and ellipses of absolute and relative positional accuracy. Based on the results of the analysis and comparison of positional accuracy, 2D micro-network in the form of triangulateration network proved to be the best quality solution.

Keywords: geodetic network, geodetic positioning, positional accuracy, triangulateration network

PRILOG

PRILOG 1. PODACI IZMJERE
1.1. Mjerene vrijednosti pravaca

Stajalište	Vizura	I. Položaj			II. Položaj		
		0	'	"	o	'	"
P5 I. girus	P2	89	27	17.0	262	27	23.0
	P1	91	29	47.0	271	29	49.0
	P11	121	00	31.0	301	00	31.0

Tablica 1.1.1.	Mierene	vrijednosti	pravaca

Tablica 1.1.2. Mjerene vrijednosti pravaca

Stajalište	Vizura	١.	Polo	žaj	II. Položaj		
		o	'	"	o	'	"
P5 II. girus	P2	359	59	59.0	180	00	02.0
	P1	9	02	29.0	189	02	35.0
	P11	38	33	12.0	218	33	15.0

Tablica 1.1.3. Mjerene vrijednosti pravaca

Stajalište V		I.	Polo	žaj	II. Položaj		
	vizura	0	'	"	٥	'	"
P5	P2	120	00	01.0	300	00	08.0
III. girus	P1	129	02	34.0	309	02	36.0
	P11	158	33	23.0	338	33	20.0

Tablica 1.1.4. Mjerene vrijednosti pravaca

Stajalište	\/i=	I.	I. Položaj			II. Položaj		
	vizura	٥	'		٥	'	"	
P4 1722 I. girus P1	172Z1	0	00	01.0	179	59	57.0	
	P11	74	16	10.0	254	16	05.0	
	P2	310	25	15.0	130	25	08.0	
	P1	343	42	11.0	163	42	09.0	

Tablica 1.1.5.	Mjerene v	rijednosti	pravaca
----------------	-----------	------------	---------

		١.	I. Položaj			II. Položaj		
Stajalište	Vizura	o	'	"	o		"	
P4 172	172Z1	60	00	00.0	239	59	52.0	
II. girus	P11	134	16	04.0	314	16	02.0	
	P2	10	25	03.0	190	25	02.0	
	P1	43	42	00.0	223	42	08.0	

Tablica 1.1.6. Mjerene vrijednosti pravaca

Stajalište	Vizura	I. Položaj			II. Položaj		
		٥	'		o	'	"
P4 III. girus	172Z1	120	00	01.0	300	00	01.0
	P11	194	16	05.0	14	16	01.0
	P2	70	25	05.0	250	25	07.0
	P1	103	42	03.0	283	42	06.0

Tablica 1.1.7. Mjerene vrijednosti pravaca

Stajalište	Vizura	١.	I. Položaj			II. Položaj		
		o	'		٥		"	
P11	P5	0	00	03.0	179	59	54.0	
I. girus	P4	19	11	15.0	199	11	11.0	
	P2	37	14	52.0	217	14	49.0	
	P1	41	52	57.0	221	52	58.0	
	172Z1	73	36	24.0	253	36	20.0	

Tablica 1.1.8. Mjerene vrijednosti pravaca

Stajalište	Vizura	I.	I. Položaj			II. Položaj		
		o	'	"	o	'	"	
P11 II. girus	P5	60	00	00.0	239	59	54.0	
	P4	79	11	11.0	259	11	07.0	
	P2	97	14	52.0	277	14	49.0	
	P1	101	52	59.0	281	52	57.0	
	172Z1	133	36	26.0	313	36	22.0	

Stajalište	Vizura	I.	I. Položaj			II. Položaj		
		o	'	"	o	'	"	
P11	P5	120	00	03.0	300	00	06.0	
III. girus	P4	139	11	20.0	319	11	23.0	
	P2	157	14	56.0	337	14	58.0	
	P1	161	53	06.0	341	53	04.0	
	172Z1	193	36	31.0	13	36	27.0	

Tablica 1.1.9. Mjerene vrijednosti pravaca

Tablica 1.1.10. Mjerene vrijednosti pravaca

Stajalište	Vizura	١.	I. Položaj			II. Položaj		
		o	'	"	o	'	"	
P2	172Z1	359	59	58.0	179	59	54.0	
i. girus	P1	45	36	49.0	225	36	51.0	
	P11	64	12	49.0	244	12	49.0	
	P4	102	18	12.0	282	18	10.0	
	P5	168	24	40.0	348	24	40.0	

Tablica 1.1.11. Mjerene vrijednosti pravaca

	Vizura	I.	Polo	žaj	II. Položaj		
Stajaliste		o	'		0	'	"
P2	172Z1	60	00	05.0	239	59	59.0
n. girus	P1	105	36	56.0	285	36	59.0
	P11	124	12	55.0	304	12	53.0
	P4	162	18	19.0	342	18	17.0
	P5	228	24	44.0	48	24	51.0

Tablica 1.1.12. Mjerene vrijednosti pravaca

	\ <i>r</i>	I. Položaj			II. Položaj		
Stajaliste	Vizura	0	'		0	'	"
P2 III. girus	172Z1	120	00	01.0	299	59	58.0
	P1	165	36	55.0	345	36	54.0
	P11	184	12	54.0	4	12	50.0
	P4	222	18	17.0	42	18	11.0
	P5	288	24	42.0	108	24	42.0

Tablica 1.1.13.	Mjerene	vrijednosti	pravaca
-----------------	---------	-------------	---------

Stajalište	Vizura	١.	Polo	žaj	II. Položaj		
		o	'	"	o		"
172Z1 I. girus	P11	183	25	44.0	3	25	45.0
	P4	234	44	26.0	54	44	27.0
	P1	245	11	36.0	65	11	39.0
	P2	262	51	22.0	82	51	18.0

Tablica 1.1.14. Mjerene vrijednosti pravaca

Stajalište		١.	Polo	žaj	II. Položaj		
	vizura	0	'	"	o		"
172Z1 II. girus	P11	243	25	46.0	63	25	51.0
	P4	294	44	28.0	114	44	35.0
	P1	305	11	40.0	125	11	40.0
	P2	322	51	23.0	142	51	25.0

Tablica 1.1.15. Mjerene vrijednosti pravaca

	Vizura	I. Položaj			II. Položaj		
Stajaliste		o	'	"	o	'	"
172Z1 III. girus	P11	303	25	47.0	123	25	53.0
	P4	354	44	30.0	174	44	34.0
	P1	5	11	41.0	185	11	48.0
	P2	22	51	26.0	202	51	29.0

Tablica 1.1.16. Mjerene vrijednosti pravaca

	\ <i>r</i>	I. Položaj			II. Položaj		
Stajaliste	vizura	٥	'	"	o	'	"
P1	172Z1	60	00	01.0	239	59	59.0
I. girus	P11	146	30	41.0	326	30	41.0
	P4	213	14	54.0	33	14	52.0
	P5	255	06	57.0	75	06	53.0
	P2	303	16	33.0	123	16	34.0

		I.	Polo	žaj	II. Položaj		
Stajaliste	Vizura	o	'	"	o	'	"
P1	172Z1	120	00	00.0	299	59	51.0
II. girus	P11	206	30	36.0	26	30	32.0
	P4	273	14	52.0	93	14	48.0
	P5	315	06	54.0	135	06	46.0
	P2	3	16	30.0	183	16	27.0

Tablica 1.1.17. Mjerene vrijednosti pravaca

		١.	Polo	žaj	II. Položaj		
Stajaliste	Vizura	o	'		٥	'	
P1	172Z1	0	00	00.0	179	59	53.0
III. girus	P11	86	30	36.0	266	30	34.0
	P4	153	14	55.0	333	14	51.0
	P5	195	06	54.0	15	06	48.0
	P2	243	16	29.0	63	16	27.0

1.2. Mjerene vrijednosti duljina

Početna Završna točka točka		Horizontalne duljine									
	Završna	1. g	irus	2. g	irus	3. girus					
	točka I. II.		I.	II.	Ι.	II.					
		m m m		m	m	m	m				
P5	P2	809.9025	809.9024	809.9004	809.9016	809.9013	809.9027				
	P1	913.7981	913.8007	913.7991	913.8000	913.7998	913.8025				
	P11	1,297.2316	1,297.2343	1,297.2308	1,297.2318	1,297.2312	1,297.2332				

Tablica 1.2.1. Mjerene vrijednosti duljina

Tablica 1.2.2. Mjerene vrijednosti duljina

		Horizontalne duljine									
Početna	Završna	1.g	irus	2.g	irus	3.girus					
točka	točka	I.	II.	Ι.	II.	Ι.	II.				
		m m m		m	m	m					
P4	172Z1	645.4717	645.4742	645.4738	645.4721	645.4723	645.4707				
	P11	619.4496	619.4865	619.4866	619.4868	619.4864	619.4859				
	P2	311.3205	311.3208	311.3200	311.3213	311.3204	311.3206				
	P1	260.1729	260.1728	260.1733	260.1735	260.1734	260.1735				

Tablica 1.2.3. Mjerene vrijednosti duljina

				Horizonta	lne duljine		
Početna	Završna	1. g	irus	2. g	irus	3. g	irus
točka	točka	I.	II.	Ι.	II.	I.	II.
		m	m	m	m	m	m
P11	P5	1,297.2230	1,297.2223	1,297.2234	1,297.2212	1,297.2231	1,297.2219
	P4	619.4854	619.4867	619.4857	619.4859	619.4861	619.4866
	P2	833.9866	833.9880	833.9878	833.9869	833.9877	833.9876
	P1	674.2724	674.2718	674.2724	674.2741	674.2729	674.2716
	172Z1	763.9150	763.9142	763.9148	763.9129	763.9145	763.9113

Tablica 1.2.4. Mjerene vrijednosti duljina

				Horizonta	lne duljine					
Početna	Završna	1. g	irus	2. g	irus	3. g	irus			
točka	točka	I.	II.	Ι.	١١.	Ι.	П.			
		m	m	m	m	m	m			
P2	172Z1	502.9663	502.9659	502.9693	502.9670	502.9671	502.9662			
	P1	170.8453	170.8453	170.8454	170.8455	170.8455	170.8455			
	P11	833.9896	833.9896	833.9895	833.9897	833.9898	833.9896			
	P4	311.3216	311.3213	311.3220	311.3214	311.3217	311.3214			
	P5	809.8997	809.9010	809.9000	809.8980	809.9001	809.8983			

Tablica 1.2.5. Mjerene vrijednosti duljina

				Horizonta	lne duljine		
Početna	Završna	1. g	irus	2. g	irus	3. g	irus
točka točk P1 172	točka	I.	II.	I.	II.	I.	П.
		m	m	m	m	m	m
P1	172Z1	402.4390	402.4360	402.4380	402.4360	402.4400	402.4370
	P11	674.2830	674.2820	674.2830	674.2830	674.2830	674.2830
	P4	260.1780	260.1770	260.1770	260.1770	260.1780	260.1770
	P5	913.8090	913.8060	913.8070	913.8080	913.8090	913.8070
	P2	170.8480	170.8480	170.8480	170.8480	170.8480	170.8480

Tablica 1.2.6. Mjerene vrijednosti duljina

				lne duljine	γ			
Početna	Završna	1. g	irus	2. g	irus	3. g	irus	
točka	točka	I.	II.	Ι.	١١.	Ι.	II.	
		m	m	m	m	m	m	
172Z1	P11	763.9320	763.9350	763.9330	763.9220	763.9340	763.9380	
	P4	645.4860	645.4880	645.4860	645.4890	645.4860	645.4920	
	P1	402.4420	402.4460	402.4450	402.4450	402.4430	402.4460	
	P2	502.9770	502.9800	502.9780	502.9810	502.9810	502.9830	

PRILOG 2.

TRIGONOMETRIJSKI OBRAZAC BR. 1

	111				0				ш				00	()			Щ				00	
	PRIMJEDB		10	ist.	Leica TC180	(br. 419175)			PRIMJEDB		10	ins.	Leica TC18((br. 419175			PRIMJEDE		10	ins.	Leica TC18	
		37 I		35'39.0" ir	22'00.0"	57'39.0"				3 -		35'44.5"	00'01.5"	35'46.0"			Щ	y I		35'47.5"	00'13.5"	
	KONTROLE	= - 0	6	57'35.0"	57'43.0"	01°55' 18.0" =	2		KONTROLE	= - 0	6	35'40.0''	35'52.0''	01°11'32.0" =	2		KONTROI	= - 0	6	35'58.0"	36'04.0"	
	2c = II. – I.	+1	. ∞	90 +	+ 02	00			Sc = II. – I.	+1	. ∞	+ 03	90 +	+ 03			. – . = ɔ2	; +	- ∞	+ 07	+ 02	
	Reducirana sredina	-	7	0°00'00.0"	9°02' 28.0"	38°33' 11.0"	35'39.0"		Reducirana sredina	з - о	7	0°00'00.0"	9°02'31.5"	38°33' 13.0"	35'44.5"		Reducirana sredina	" - 0	7	0°00' 00.0"	9°02' 30.5"	
	Sredina iz I. i II.	" •	9	82°27' 20.0"	91°29' 48.0"	121°00'31.0"	57'39.0"		Sredina iz I. i II.	ч - о	9	0°00'00.5"	9°02' 32.0"	38°33' 13.5"	35'46.0"		Sredina iz I. i II.	3 - 0	9	120°00'04.5"	129°02' 35.0"	
	II. Položaj durbina	3 - 0	2	262°27'23.0"	271°29'49.0"	301°00'31.0"	57'43.0"		II. Položaj durbina	3 - 0	5	180°00'02.0"	189°02'35.0"	218°33'15.0"	35'52.0"		II. Položaj durbina	3 - 0	ۍ ا	300°00'08.0"	309'02'36.0"	
1	l. Položaj durbina	3 - 0	4	82°27' 17.0"	91°29' 47.0"	121°00' 31.0"	57'35.0"	1	I. Položaj durbina	- 0	4	359°59' 59.0"	9°02' 29.0"	38°33' 12.0"	35'40.0"	~	I. Položaj durbina	,, - 0	4	120°00'01.0"	129°02' 34.0"	
i obrazac br.	Vizurna točka		3	P2	P1	P11		i obrazac br.	Vizurna točka		с	P2	P1	P11		i obrazac br.	Vizurna točka		Э	P2	Ę	
Trigonometrijsk	Stajalište Girus		2	P5	I. girus			Trigonometrijsk	Stajalište Girus		2	P5	II. girus			Trigonometrijsk	Stajalište Girus		2	P5	III. airus	
Tablica 2.1.	Datum i sat		-	10. mj	1997. g.			Tablica 2.2.	Datum i sat		-	10. mj.	1997. g.			Tablica 2.3.	Datum i sat		-	10. mj.	1997. g.)

36'04.0" 01°12' 02.0" \sim

35'47.5"

36'01.0"

36'04.0"

35'58.0"

																						-
	PRIMJEDBE		10	nst.	Leica TC1800	(br. 419175)					PRIMJEDBE		10	nst.	Leica TC1800	(br. 419175)					PRIMJEDBE	
		1 16		23'32.0" ir	59'56.0"	23'28.0"					LE	1 22		23'21.5" ir	59'44.0"	23'05.5"					SOLE	
	IRO		ი			Ш					RO		6			Ш					NTF	
	LNOX			23'37.0"	23'19.0"	00'46'56.0''	2				KONT			23'07.0"	23'04.0"	0046'11.0"	2				Х О	
				04	05	07	02							80	02	01	80			.1 -	- Sc = II.	
	.l – .ll = 52	+1	8	1			-			I	Sc = II		8									
		"					(0				+1		I	ı	I	+	-			ana a	
	educiraná sredina	-	7	0°00'00.0	1°16' 08.5	0°25'12.5	3°42'11.0	23'32.(ducirana redina	³³ I	7	00, 00.0"	16' 07.0"	°25'06.5"	°42'08.0"	23'21.5'			Reducira sredin	
	R	٥			7	31	34				Re	o		°	74°	310	343					
	dina i II.	"	6	9'59.0"	.07.5"	5'11.5"	2'10.0"	3'28.0"			na II.	11		56.0"	03.0"	02.5"	04.0"	'05.5"			redina : I. i II.	
	Srec iz I.	0	0	359°59	74°16	310°25	343°42	2			Sredii iz I. i	•	9	59°59'	34°16'	10°25' (43°42' (23'			<u>₩</u> .	
		"		0	0	0	0	.0"						-	-	-	-	-			ସ ସ:	
	II. Iožaj bina		5	9'57	6'05	5'08	2'09	23'19			žaj ina	"		52.0	02.0	02.0	08.0	'04.C		=	olož urbir	
	Po	-		79°5	54°	302	634			=	n. Polo durb		2	9°59'	496	025	342'	23			с ъ	
		0		-		-	-	-				0		23	31	19	22					
	aj	"		0.1.0	10.0	15.0"	11.0"	37.0				"		.0.0	"O.†	0.8	.0.0	7.0"			ina	
	l. olož urbir	-	4	,00	16'	25'	42'	23'		-	l. oloža rbina	-	4	0, 0(16'04	5, 03	2' 0(23'0		-	Polo	
-	щρ	o		ŏ	74°	310°	343°		~		Pc du	0		0°08	134°	10°2	43°4		~			
ic br.	Ø								ic br.						•				ic br.		a a	
ti obraza	Vizurna točka		с	172Z1	P11	Ρ2	Ρ1		ti obraza		Vizurna točka		З	172Z1	P11	Ρ2	Ρ		ci obraza		Vizur točk	
trijsk									etrijsk	-									itrijsk		e	
Trigonome	Stajalište Girus		2	P4	I. girus				Trigonome	0	Stajalište Girus		2	P4	II. girus				Trigonome		Stajališt Girus	
2.4									2.5	-									2.6.		=	
Tablica	Daturr i sat		-		10. mj.	1997. g.			Tablica		Datum i sat		-		10. mj.	1997. g.			Tablica		i i sat	

	PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)		
	щ	" 1		23'10.5"	00'04.0"	23'14.5"		
	ROL		_			П		
	KONT	0	0	23'14.0"	23'15.0"	0046'29.0"	2	
			~	00	04	02	03	
	1 - 11 - 50	+1	ω		ı	+	+	
	Reducirana sredina	» I O	7	0°00' 00.0"	74°16' 02.0"	310°25'05.0"	343°42'03.5"	23'10.5"
	Sredina iz I. i II.	» - o	9	120°00' 01.0''	194°16' 03.0''	70°25' 06.0''	103°42' 04.5''	23'14.5"
	II. Položaj durbina	<i>"</i> , I O	5	300°00'01.0"	14° 16' 01.0"	250°25'07.0"	283°42'06.0"	23'15.0''
-	I. Položaj durbina	» I 0	4	120°00'01.0"	194°16' 05.0"	70°25' 05.0"	103°42' 03.0"	23'14.0"
	Vizurna točka		8	172Z1	P11	P2	۲٩	
	Stajalište Girus		2	P4	III. girus			
1000 000	Datum i sat		Ļ		10. mj.	1997. g.		

	PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)					PRIMJEDBE	
	щ	"		55'29.0"	59'52.5"	55'21.5"					щ	39 1
	ROL		6			Ш					ROL	
	KONT	= - 0		55'31.0"	55'12.0"	01 50'43.0"	2				LNOX	= - 0
	2c = II. – I.		ω	60	6	03	01	6			2c = II. – I.	
		+1		ı	ı	ı	+	ı				+1
	ucirana dina	"	7	0, 00.0"	1' 14.5"	4' 52.0"	2' 59.0"	6' 23.5"	55'29.0"		ucirana edina	3
	Redu sre	0	-	0°0	19°1	37°1	41°5	73°3(ì		Redu	0
		3		5"	0	5"	5"	0	.5"			3
	Sredina iz I. i II.	-	9	°59'58.	%11'13 .	[°] 14'50.	°52'57.	3°36'22.	55'21		Sredina iz I. i II.	-
		0		356	10	37	4	20				٥
	žaj ina	u		54.0"	'11.0"	'49.0"	58.0"	20.0"	'12.0"		Džaj Dina	33
	II. Polo durb	-	5	179 59'	199911	21794	22152	25336	55		Polc durb	•
		3		.0	.0	.0	.0	.0	.0.			3
	l. oložaj irbina	-	4	0, 03	1'15	4' 52	52' 57	36' 24	55'31		l. oložaj urbina	-
. 1	η Ρc	0		0。0	19°,	37°,	41°5	73°3		.	d d	o
ki obrazac br	Vizurna točka		с	P5	P4	P2	P1	172Z1		ki obrazac br	Vizurna točka	
Trigonometrijs	Stajalište Girus		2	P11	I. girus					Triaonometriisl	Stajalište Girus	
Tablica 2.7.	Datum i sat		-		10. mj.	1997. g.				Tablica 2.8.	Datum i sat	

-1011 , ...+ ...+ 1 ŀ

			-	-	-	-	-	
PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)			
Щ	»		55'33.5"	59'45.0"	55'18.5"			
IRO		<u></u> б			Ш			
LNOX	= - 0		55'28.0"	55'09.0"	01 50'37.0''	2		
.l – .ll = J.		ω	90	04	03	02	04	
	+1		ı	ı	ı	ı	ı	
ana	3		0.0"	2.0"	3.5"	1.0"	7.0"	33.5"
ducira	-	7	0,00,	11.1	14'5	53' 0	36'2	55'3
Re	0		Õ	19'	37'	41	73,	
Sredina iz I. i II.	3 - 0	9	59°59'57.0"	79°11'09.0"	97°14'50.5"	101°52'58.0"	133°36' 24.0"	55'18.5"
II. Položaj durbina	» •	5	239°59'54.0"	259°11'07.0"	277°14'49.0"	281°52'57.0"	313°36'22.0"	55'09.0"
	"		.0	.0	.0	.0	.0	.0
l. ožaj bina	-	4	00 ,0	1.11.	4' 52.	2' 59.	5' 26.	55'28
Pol dur	0		90°0	79°1	97°1,	01°5;	33°3(
Vizurna točka		ო	P5	P4	P2	P1 1	172Z1 1	
Stajalište Girus		2	P11	II. girus				
Datum i sat		-		10. mj.	1997. g.			

Tablica 2.9. Trigonometriiski obrazac br. 1

	PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)			
	ш	3 1		55'34.5"	00'22.5"	55'57.0"			
	ROL		6			=			
	KONT	- 0	0,	55'56.0"	55'58.0"	01 51 54.0"	2		
	2c = II. – I.		8	03	03	02	02	04	
		+I		+	+	+	I	ı	
	Reducirana sredina	" -	7	0°00' 00.0''	19°11'17.0''	37° 14' 52.5''	41°53'00.5"	73°36' 24.5''	55'34.5"
	Sredina iz I. i II.	,, ,, ,	9	120°00' 04.5"	139°11'21.5"	157° 14' 57.0"	161°53' 05.0"	193°36' 29.0"	55'57.0"
	II. Položaj durbina	" •	5	300°00'06.0"	319°11'23.0"	337°14'58.0"	341°53'04.0"	13°36' 27.0"	55'58.0"
	I. Položaj durbina	³³ I O	7	120°00' 03.0"	139°11' 20.0"	157°14' 56.0"	161°53' 06.0"	193°36' 31.0"	55'56.0"
	Vizurna točka		ო	P5	P4	P2	Р	172Z1	
11190101010	Stajalište Girus		2	P11	III. girus				
1 40104 2.0.	Datum i sat		1		10. mj.	1997. g.			

	PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)			
	LE	37 I		32'46.0"	59'40.0"	32'26.0"			
	TRO		6			Ш			
	NOX	= - 0		32'28.0''	32'24.0''	01°04'52.0"	2		
	.1 – .11 – .72		8	04	02	00	02	00	
	1 11 - 00	+1	~	ı	+		ı		
	Reducirana sredina	"	7	0°00' 00.0"	45°36'54.0"	64°12'53.0"	102°18'15.0"	168°24'44.0"	32'46.0"
	Sredina iz I. i II.	"	9	359° 59' 56.0"	45°36' 50.0"	64°12'49.0"	102°18' 11.0"	168°24' 40.0"	32'26.0"
	II. Položaj durbina	" "	5	179 59 54.0"	22536'51.0''	244 °1 2'49.0''	28248'10.0"	34824'40.0''	32'24.0"
or. 1	I. Položaj durbina	"	4	359° 59' 58.0"	45°36' 49.0"	64° 12' 49.0"	102° 18' 12.0"	168°24' 40.0"	32'28.0"
iski obrazac b	Vizurna točka		3	172Z1	P1	P11	P4	P5	
D. Trigonometrij	Stajalište Girus		2	P2	I. girus				
Tablica 2.1(Datum i sat		٢			10. mj.	1997.g.		

Tablica 2.11. Trigonometrijski obrazac br. 1

	PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)				
	Щ	33 L		32'49.0"	00'10.0"	32'59.0"				
	RO		_			Ш				
	KONTI	- 0	6	32'59.0"	32'59.0"	01°05'58.0"	2			
	2c = II. – I.		8	90	60	02	02	20		
		+1		ı	+	ı	ı	+		
	Reducirana sredina	"	7	0°00' 00.0"	45°36'55.5"	64° 12' 52.0"	102° 18'16.0"	168°24'45.5"	32'49.0"	
	Sredina iz I. i II.	33 I	9	60°00' 02.0"	105°36' 57.5"	124°12'54.0"	162°18' 18.0"	228°24' 47.5"	32'59.0"	
	II. Položaj durbina	3 1	5	239 59 59.0''	28536'59.0''	304 °1 2'53.0''	342 18.17.0"	48°24'51.0''	32'59.0"	
1.1	I. Položaj durbina	33 1	4	60°00' 05.0"	105°36' 56.0"	124° 12' 55.0"	162° 18' 19.0"	228°24' 44.0"	32'59.0"	
	Vizurna točka		£	172Z1	۶J	P11	54	5d		
	Stajalište Girus		2	P2	ll. girus					
ו מטווטמ ב. ו	Datum i sat		٢		10. mj.	1997.g.				

Tablica 2.12. Trigonometrijski obrazac br. 1

PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)			
щ	3 -		32'44.5"	59'57.5"	32'42.0"			
ROL		6			Ш			
KONT	= - 0	0,	32'49.0"	32'35.0"	01°05'24.0"	2		
			03	01	04	06	00	
1 11 = 52	+1	3	ı	ı	ı	ı		
Reducirana sredina	33 -	7	0°00' 00.0"	45°36'55.0"	64° 12' 52.5"	102°18'14.5"	168°24'42.5"	32'44.5"
Sredina iz I. i II.	33 - O	9	119°59' 59.5"	165°36' 54.5"	184°12' 52.0"	222°18' 14.0"	288°24' 42.0"	32'42.0"
II. Položaj durbina	- -	5	299 59 58.0"	345°36'54.0''	04°12'50.0"	42°18'11.0''	10824'42.0''	32'35.0"
I. Položaj durbina	-	7	120°00'01.0"	165° 36' 55.0"	184°12' 54.0"	222°18'17.0"	288°24' 42.0"	32'49.0"
Vizurna točka		3	172Z1	P1	P11	P4	P5	
Stajalište Girus		2	P2	III. girus				
Datum i sat		1		10. mj.	1997.g.			

Fablica 2.1	3. Trigonometri	ijski obrazac	br. 1		-	-	-		-		-
Datum i sat	Stajalište Girus	Vizurna točka	l. Položaj durbina	II. Položaj durbina	Sredina iz I. i II.	Reducirana sredina		2c = II. – I.	KONTR	OLE	PRIMJEDBE
			" •	" •	"	" I O	+I		= - 0	77 I	
4	2	3	4	5	9	2		8	6		10
	172Z1	P11	183°25' 44.0"	0325'45.0"	183°25' 44.5"	0°00'00'00'0	+	01	13'08.0"	30'10.5	inst.
10. mj.	I. girus	P4	234°44' 26.0"	54%44'27.0"	234°44' 26.5"	51°18'42.0"	+	01	13'09.0"	42'58.0	Leica TC1800
1997. g.		P1	245°11' 36.0"	6541'39.0"	245°11'37.5"	61°45' 53.0"	+	03	0026'17.0"	13'08.5	h (br. 419175)
		P2	262°51' 22.0"	82 51 18.0"	262°51' 20.0"	79°25' 35.5"	ı	04	2		
			13'08.0"	13'09.0"	13'08.5"	30'10.5"					

Tablica 2.14. Trigonometrijski obrazac br. 1

	PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)			
	щ	" 1		30'10.0"	43'14.0"	13'24.0"			
	ROL		_			П			
	KONTF	= - 0	6	13'17.0"	13'31.0"	0026'48.0"	2		
				05	07	00	02		
	2c = . – l.	+1	8	+	+		+		
		3		-	:	F.	F.		
	ucirana edina	-	7	0,00'00	18' 43.0	45' 51.5	25' 35.5	30'10.0	
	Red sr	0		0°0	51°′	61°2	79°2		
	edina I. i II.	"	9	5' 48.5"	.4' 31.5"	1' 40.0"	1' 24.0"	13'24.0"	
	Sre Iz	0		243°2	294°4	305° 1	322°5		
								0	
	II. Iožaj bina	,	5	51.0	4'35.(1'40.(1'25.(3'31.	
	Pol	•		63°25	114%	1259	1425	-	
		3		.0	0	0	.0	.0	
	ožaj oina	-	. +	46.	. 28.	40.	' 23.	3'17	
	Pole	0	7	243°25	294°44	305°11	322°51	-	
10111 021 0200	Vizurna točka		З	P11	P4	P1	P2		
1. 11.901.011.04	Stajalište Girus		2	172Z1	II. girus				
1 3 201100	Datum i sat		~		10. mj.	1997. g.			

Tablica 2.15. Trigonometrijski obrazac br. 1

	PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)		
	JLE	" 1		30'14.0"	43'20.0"	13'34.0"		
	NTRO		6	•		=		
	KO	= - 0		13'24.0'	13'44.0'	0027'08.0"	2	
				90	04	07	03	
		+1	œ	+	+	+	+	
	Reducirana sredina	" I o	7	0°00'00.00	51° 18' 42.0"	61°45' 54.5"	79°25' 37.5"	30'14.0"
	Sredina iz I. i II.	» •	9	303°25' 50.0"	354°44' 32.0"	5°11'44.5"	22°51' 27.5"	13'34.0"
	II. Položaj durbina	» •	5	12325'53.0"	174°44'34.0"	185 1'48.0"	202 \$1'29.0"	13'44.0"
	I. Položaj durbina	<i>"</i>	4	303°25' 47.0"	354°44' 30.0"	5°11'41.0"	22°51' 26.0"	13'24.0"
	Vizurna točka		с	P11	P4	P1	P2	
	Stajalište Girus		2	17221	III. girus			
50.000	Datum i sat		٢		10. mj.	1997. g.		

	PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)			
	Щ	3 7 I		09'02.5"	"0.00'00"	09'02.5"			
	TRO		6			II			
	LNOX	= - 0		.0.90'00	08'59.0"	0048'05.0"	2		
				02	00	02	04	01	
	Sc = -	+1	ø	ı		•	•	+	
	Reducirana sredina	" "	7	0°00'00.00"	86°30'41.0"	153° 14'53.0"	195° 06'55.0"	243° 16'33.5"	09'02.5"
	Sredina iz I. i II.	"	9	60°00'00.00"	146° 30' 41.0"	213° 14' 53.0"	255°06' 55.0"	303° 16' 33.5"	09'02.5''
	II. Položaj durbina	"	5	239°59'59.0"	326°30'41.0"	33° 14' 52.0"	75°06'53.0"	123°16'34.0"	08'59.0"
r. 1	I. Položaj durbina	, ,	4	60°00' 01.0"	146°30' 41.0"	213°14' 54.0"	255°06' 57.0"	303°16' 33.0"	"0.90'06.0"
ski obrazac b	Vizurna točka		3	172Z1	P11	P4	P5	P2	
3. Trigonometrij	Stajalište Girus		2	P1	I. girus				
Tablica 2.16	Datum i sat		-		10. mj.	1997. g.			

Tablica 2.17. Trigonometrijski obrazac br. 1

	PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)				
	щ	3 1		00,00.5"	59'37.5"	08'38.0"				
	ROL		6			П				
	KONT	- 0		08'52.0"	08'24.0"	00°17'16.0"	2			
	.1 – .11 – .12		ő	60	04	04	08	03		
	1 11 - 00	-++	~	ı	ı	ı	ı	ı		
	Reducirana sredina	3 7	7	0°00'00.00	86°30'38.5"	153° 14'54.5"	195° 06'54.5"	243° 16'33.0"	09'00.5"	
	Sredina iz I. i II.	³³ I O	9	119°59' 55.5"	206°30'34.0"	273° 14' 50.0"	315°06' 50.0"	3° 16' 28.5"	08'38.0''	
	II. Položaj durbina	³³ I O	5	299*59'51.0"	26°30' 32.0"	93°14' 48.0"	135°06'46.0"	183°16'27.0"	08'24.0"	
		"		.0"	.0"	.0.	0"	.0"	2.0"	
	I. Iožaj rbina	-	4	00,00	10' 36	4' 52	16' 54	6' 30	08'5	
-	Pc	0		120°C	206°3	273°1	315°C	3°1		
000000000000000000000000000000000000000	Vizurna točka		С	17221	P11	P4	P5	Ρ2		
	Stajalište Girus		2	P1	II.girus					
1 30100	Datum i sat		۲		10.mj.	1997.g.				

Tablica 2.18. Trigonometrijski obrazac br. 1

PRIMJEDBE		10	inst.	Leica TC1800	(br. 419175)			
Ш	37 I		09'01.0"	59'42.5"	08'43.5"			
IRO		6			Ш			
LNOX	- 0		08'54.0"	08'33.0"	00°17'27.0"	2		
		~	07	02	04	06	02	
1 11 = 50	-++	~	1	ı	ı	ı	•	
Reducirana sredina		7	0°00'00.00	86° 30' 38.5"	153° 14'56.5"	195°06'54.5"	243°16'31.5"	09'01.0"
Sredina iz I. i II.	" 1 0	9	359° 59' 56.5"	86°30'35.0"	153° 14' 53.0"	195°06' 51.0"	243°16'28.0"	08'43.5''
II. Položaj durbina	" "	5	179°59'53.0"	266°30'34.0"	333°14'51.0"	15°06' 48.0"	63° 16' 27.0"	08'33.0"
I. Položaj durbina	" •	4	0°00'00.00"	86°30' 36.0"	153°14' 55.0"	195°06' 54.0"	243°16' 29.0"	08'54.0"
Vizurna točka		3	172Z1	P11	P4	P5	P2	
Stajalište Girus		2	P1	III. girus				
Datum i sat		-		10. mj.	1997. g.			

PRILOG 3.

STAJALIŠNO IZJEDNAČENJE PRAVACA

Vizuro	Girus	1	2	3	Sred	ina
vizuia	• •	"	33	"	。,	,,
			Stajalište	P5		
P2	0°00	' 00,0"	00' 00,0"	00' 00,0"	0°00	0,00"
P1	9°02	' 28,0"	02' 31,5"	02' 30,5"	9°02	2' 30,00"
P11	38°33	' 11,0"	33' 13,0"	33' 17,0"	38°33	5' 13,67"
Σ		39,0	44,5	47,5		43,7
		d ₁	d ₂	d ₃		Σd
		0,00	0,00	0,00		0,00"
		2,00	-1,50	-0,50		0,00"
		2,67	0,67	-3,33		0,00"
Σd		4,67	-0,83	-3,83		0,00
(Σd) ²		21,81	0,69	14,67	1	37,17
(Σd) ² /s		7,27	0,23	4,89	$\frac{1}{2} \sum (d)^2$	12,39
					s —	
		d_1^2	d_2^2	d_3^2		
		0,00	0,00	0,00		0,00
		4,00	2,25	0,25		6,50
		7,13	0,45	11,09		18,67
		11,13	2,70	11,34		25,17
	-		1			
	,	$v^t v = d^t$	$t d - \frac{1}{s} \Sigma(d^2) =$	25.17 - 12.3	9 = 12.78	
			3			

Tablica 3.1. Stajališno izjednačenje pravaca

- standardno odstupanje pojedinog mjerenja

$$s = \sqrt{\frac{\mathbf{v}^{t}\mathbf{v}}{(n-1)(s-1)}} = \sqrt{\frac{12.78}{4}} = 1.79^{"}$$

$$s_x = \frac{s}{\sqrt{n}} = 1.03$$
".

Vizura	Girus	s 1	2	3	Sredi	ina
vizuia	0	, ,,	"	"	。,	"
			Stajalište	P4		
172Z1	0°0	0' 00,0"	00' 00,0"	00' 00,0"	0°00'	00,00"
P11	74°1	6' 08,5"	16' 07,0"	16' 02,0"	74°16'	05,83"
P2	310°2	5' 12,5"	25' 06,5"	25' 05,0"	310°25'	08,00"
P1	343°4	2' 11,0"	42' 08,0"	42' 03,5"	343°42'	07,50"
Σ		32,0	21,5	10,5		21,3
		d ₁	d ₂	d ₃		Σd
		0,00	0,00	0,00		0,00"
		-2,67	-1,17	3,83		-0,00"
		-4,50	1,50	3,00		0,00"
		-3,50	-0,50	4,00		-0,00"
Σd		-10,67	-0,17	10,83		-0,00
(Σd) ²		113,85	0,03	117,29		231,17
(Σd) ² /s		28,46	0,01	29,32	$\frac{1}{2}\sum_{k=1}^{\infty} (d)^{2}$	57,79
					s Z V	
		d1 ²	d_2^2	d_3^2		
		0,00	0,00	0,00		0,00
		7,13	1,37	14,67		23,17
		20,25	2,25	9,00		31,50
		12,25	0,25	16,00		28,50
		39,63	3,87	39,67		83,17
			+ 1			
		v ^t v =	d'd - $\frac{-}{s}\Sigma(d^2)$) = 83.17 - 57	7.79 = 25.3	38
			-			

Tablica 3.2. Stajališno izjednačenje pravaca

- standardno odstupanje pojedinog mjerenja

$$s = \sqrt{\frac{v^t v}{(n-1)(s-1)}} = \sqrt{\frac{25.38}{6}} = 2.06",$$

$$s_x = \frac{s}{\sqrt{n}} = 1.19$$
".

Vizuro	Girus	1	2	3	Srec	lina
Vizuia	。,	"	"	,,	0	, ,,
		5	Stajalište	P11		
P5	0°00	0,00"	00' 00,0"	00' 00,0"	0°0	0' 00,00"
P4	19°11	' 14,5"	11' 12,0"	11' 17,0"	19°1	1' 14,50"
P2	37°14	52,0"	14' 53,5"	14' 52,5"	37°1	4' 52,67"
P1	41°52	2' 59,0"	53' 01,0"	53' 00,5"	41°5	3' 00,17"
172Z1	73°36	5' 23,5"	36' 27,0"	36' 24,5"	73°3	6' 25,00"
Σ		29,0	33,5	34,5		32,3
		d ₁	d ₂	d ₃		Σd
		0,00	0,00	0,00		0,00"
		0,00	2,50	-2,50		0,00"
		0,67	-0,83	0,17		0,00"
		1,17	-0,83	-0,33		0,00"
		1,50	-2,00	0,50		0,00"
Σd		3,33	-1,17	-2,17		0,00
(Σd) ²		11,09	1,37	4,71		17,17
(Σd) ² /s		2,22	0,27	0,94	$\frac{1}{s}\sum(d)^2$	3,43
		d_1^2	d_2^2	d_3^2		
		0,00	0,00	0,00		0,00
		0,00	6,25	6,25		12,50
		0,45	0,69	0,03		1,17
		1,37	0,69	0,11		2,17
		2,25	4,00	0,25		6,50
		4,07	11,63	6,64		22,33
		v ^t v =	$d^{t}d - \frac{1}{s}\Sigma(d^{2})$	= 22.33 - 3.4	13 = 18.90	

Tablica 3.3. Stajališno izjednačenje pravaca

- standardno odstupanje pojedinog mjerenja

$$s = \sqrt{\frac{v^t v}{(n-1)(s-1)}} = \sqrt{\frac{18.90}{8}} = 1.54$$
",

$$s_x = \frac{s}{\sqrt{n}} = 0.89$$
".

Vizuro	Girus	1	2	3	Sred	ina
vizuia	0 9	"	,,	,,	。,	,,
		S	Stajalište	P2		
172Z1	0° 00	0' 00,0"	00' 00,0"	00' 00,0"	0°00	0,00"
P1	45° 36	6' 54,0"	36' 55,5"	36' 55,0"	45° 36	6' 54,83"
P11	64°12	2' 53,0"	12' 52,0"	12' 52,5"	64°12	2' 52,50"
P4	102°18	3' 15,0"	18' 16,0"	18' 14,5"	102°18	3' 15,17"
P5	168°24	4' 44,0"	24' 45,5"	24' 42,5"	168°24	4' 44,00"
Σ		46,0	49,0	44,5		46,5
		d ₁	d ₂	d ₃		Σd
		0,00	0,00	0,00		0,00"
		0,83	-0,67	-0,17		0,00"
		-0,50	0,50	0,00		0,00"
		0,17	-0,83	0,67		0,00"
		0,00	-1,50	1,50		0,00"
Σd		0,50	-2,50	2,00		0,00
(Σd) ²		0,25	6,25	4,00	1	10,50
(Σd) ² /s		0,05	1,25	0,80	$\frac{1}{2} \sum (d)^2$	2,10
					<u>s</u> —	
		d_1^2	d_2^2	d_3^2		
		0,00	0,00	0,00		0,00
		0,69	0,45	0,03		1,17
		0,25	0,25	0,00		0,50
		0,03	0,69	0,45		1,17
		0,00	2,25	2,25		4,50
		0,97	3,64	2,73		7,33
		v ^t v =	$\mathbf{d}^{\mathbf{t}}\mathbf{d} - \frac{1}{s}\Sigma(\mathbf{d}^2)$	= 7.33 - 2.	10 = 5.23	

Tablica 3.4. Stajališno izjednačenje pravaca

- standardno odstupanje pojedinog mjerenja

$$s = \sqrt{\frac{\mathbf{v}^t \mathbf{v}}{(n-1)(s-1)}} = \sqrt{\frac{5.23}{8}} = 0.81'',$$

$$s_x = \frac{s}{\sqrt{n}} = 0.47$$
".

Vizuro	Girus	1	2	3	Sred	ina
vizuia	。,	,,	"	"	。,	,,
		St	ajalište	172Z1		
P11	0°00	0' 00,0"	00' 00,0"	00' 00,0"	0°00	0' 00,00"
P4	51°18	3' 42,0"	18' 43,0"	18' 42,0"	51°18	8' 42,33"
P1	61°45	5' 53,0"	45' 51,5"	45' 54,5"	61°45	5' 53,00"
P2	79°25	5' 35,5"	25' 35,5"	25' 37,5"	79°25	5' 36,17"
Σ		10,5	10,0	14,0		11,5
		d ₁	d ₂	d ₃		Σd
		0,00	0,00	0,00		0,00"
		0,33	-0,67	0,33		0,00"
		0,00	1,50	-1,50		0,00"
		0,67	0,67	-1,33		0,00"
Σd		1,00	1,50	-2,50		0,00
(Σd) ²		1,00	2,25	6,25		9,50
(Σd) ² /s		0,25	0,56	1,56	$\frac{1}{s}\sum_{k=1}^{\infty} (d)^{2}$	2,38
		d_1^2	d_2^2	d_3^2	5	
		0,00	0,00	0,00		0,00
		0,11	0,45	0,11		0,67
		0,00	2,25	2,25		4,50
		0,45	0,45	1,77		2,67
		0,56	3,15	4,13		7,83
		v ^t v =	$d^{t}d - \frac{1}{s}\Sigma(d^{2}) =$	= 7.83 - 2.38	= 5.46	

Tablica 3.5. Stajališno izjednačenje pravaca

- standardno odstupanje pojedinog mjerenja

$$s = \sqrt{\frac{v^t v}{(n-1)(s-1)}} = \sqrt{\frac{5.46}{6}} = 0.95'',$$

$$s_x = \frac{s}{\sqrt{n}} = 0.55^{"}$$
.

Vizura	Girus	1	2	3	Sredi	na
vizuia	0	, ,,	"	"	。,	,,
			Stajalište	P1		
172Z1	0°00	0,0"	00' 00,0"	00' 00,0"	0°00	' 00,00"
P11	86°30	' 41,0"	30' 38,5"	30' 38,5"	86°30	' 39,33"
P4	153°14	' 53,0"	14' 54,5"	14' 56,5"	153°14	' 54,67"
P5	195°06	55,0"	06' 54,5"	06' 54,5"	195°06	' 54,67"
P2	243°16	5' 33,5"	16' 33,0"	16' 31,5"	243°16	' 32,67"
Σ		2,5	0,5	1,0		1,3
		d ₁	d ₂	d ₃		Σd
		0,00	0,00	0,00		0,00"
		-1,67	0,83	0,83		0,00"
		1,67	0,17	-1,83		0,00"
		-0,33	0,17	0,17		-0,00"
		-0,83	-0,33	1,17		0,00"
Σd		-1,17	0,83	0,33		0,00
(Σd) ²		1,37	0,69	0,11		2,17
(Σd) ² /s		0,27	0,14	0,02	$\frac{1}{a}\sum_{d}(d)^2$	0,43
		-1.2			3	
		a ₁ -	a ₂ -	a ₃ -		0.00
		0,00	0,00	0,00		0,00
		2,79	0,69	0,69		4,17
		2,79	0,03	3,35		6,17
		0,11	0,11	0,03		0,25
		0,69	0,00	1,37		2,06
		6,38	0,83	5,44		12,64
$\mathbf{v}^{t}\mathbf{v} = \mathbf{d}^{t}\mathbf{d} - \frac{1}{s}\Sigma(\mathbf{d}^{2}) = 12.64 - 0.43 = 12.20$						

Tablica 3.6. Stajališno izjednačenje pravaca

- standardno odstupanje pojedinog mjerenja

$$s = \sqrt{\frac{v^t v}{(n-1)(s-1)}} = \sqrt{\frac{12.20}{8}} = 1.24"$$

$$s_x = \frac{s}{\sqrt{n}} = 0.71^{"}$$
.

PRILOG 4.

RAČUNANJE NESUGLASICA FIGURNIH UVJETA -PRAVCI

I. trokut P5-P2-P1				
Stajalište	Vizura	Pravac	Kut	
P5	P2	L1		
P5	P1	L2	9°02' 30.00"	
P2	P1	L14		
P2	P5	L17	122°47' 49.10"	
P1	P5	L25		
P1	P2	L26	48°09' 38.00"	
		Σ =	179°59' 57.10"	
		-	180°00' 00.00"	
		ω =	-2.90"	

Tablica 4.1. Nesuglasice figurnog uvjeta

II. trokut P5-P1-P11			
Stajalište	Vizura	Pravac	Kut
P5	P1	L2	
P5	P11	L3	29°30' 43.67"
P1	P11	L23	
P1	P5	L25	108°36' 15.33"
P11	P5	L8	
P11	P1	L11	41°53' 00.17"
		Σ =	179°59' 59.17"
		-	180°00' 00.00"
		ω =	-0.83"

Tablica 4.3. Nesuglasice figurnog uvjeta

III. trokut P5-P2-P11				
Stajalište	Vizura	Pravac	Kut	
P5	P2	L1		
P5	P11	L3	38°33' 13.67"	
P2	P11	L15		
P2	P5	L17	104°11' 51.50"	
P11	P5	L8		
P11	P2	L10	37°14' 52.67"	
		Σ =	179°59' 57.83"	
		-	180°00' 00.00"	
		ω =	-2.17"	

Tablica 4.4. Nesuglasice figurnog uvjeta

IV. trokut P4-172Z1-P1			
Stajalište	Vizura	Pravac	Kut
P4	172Z1	L4	
P4	P1	L7	16°17' 52.50"
172Z1	P4	L19	
172Z1	P1	L20	10°27' 10.67"
P1	172Z1	L22	
P1	P4	L24	153°14' 54.67"
		Σ =	179°59' 57.83"
		-	180°00' 00.00"
		ω =	-2.17"

V. trokut P4-172Z1-P2			
Stajalište	Vizura	Pravac	Kut
P4	172Z1	L4	
P4	P2	L6	49°34' 52.00"
172Z1	P4	L19	
172Z1	P2	L21	28°06' 53.83"
P2	172Z1	L13	
P2	P4	L16	102°18' 15.17"
		Σ =	180°00' 01.00"
		-	180°00' 00.00"
		ω =	1.00"

Tablica 4.5. Nesuglasice figurnog uvjeta

Tablica 4.6	Nesuglasice	figurnog	uvjeta
-------------	-------------	----------	--------

VI. trokut P4-172Z1-P11				
Stajalište	Vizura	Pravac	Kut	
P4	172Z1	L4		
P4	P11	L5	74°16' 05.83"	
172Z1	P11	L18		
172Z1	P4	L19	51°18' 42.33"	
P11	P4	L9		
P11	172Z1	L12	54°25' 10.50"	
		Σ =	179°59' 58.67"	
		-	180°00' 00.00"	
		ω =	-1.33"	

VII. trokut P4-P1-P2				
Stajalište	Vizura	Pravac	Kut	
P4	P2	L6		
P4	P1	L7	33°16' 59.50"	
P1	P4	L24		
P1	P2	L26	90°01' 38.00"	
P2	P1	L14		
P2	P4	L16	56°41' 20.33"	
		Σ =	179°59' 57.83"	
		-	180°00' 00.00"	
		ω =	-2.17"	

Tablica 4.7. Nesuglasice figurnog uvjeta

Tablica 4.8. Nesuglasice figurnog uvjeta

VIII. trokut P4-P1-P11			
Stajalište	Vizura	Pravac	Kut
P4	P11	L5	
P4	P1	L7	269°26' 01.67"
P1	P11	L23	
P1	P4	L24	66°44' 15.33''
P11	P4	L9	
P11	P1	L11	22°41' 45.67''
		Σ =	358°52' 02.67"
		-	180°00' 00.00"
		ω =	2.67"

IX. trokut P4-P2-P11			
Stajalište	Vizura	Pravac	Kut
P4	P11	L5	
P4	P2	L6	123°50' 57.83"
P2	P11	L15	
P2	P4	L16	38°05' 22.67"
P11	P4	L9	
P11	P2	L10	18°03' 38.17"
		Σ =	179°59' 58.67"
		-	180°00' 00.00"
		ω =	-1.33"

Tablica 4.9. Nesuglasice figurnog uvjeta

|--|

X. trokut P11-P2-P1					
Stajalište	Vizura	Pravac	Kut		
P11	P2	L10			
P11	P1	L11	4°38' 07.50"		
P2	P1	L14			
P2 P11		L15	18°35' 57.67"		
P1 P11		P23			
P1 P4		P26	156°45' 53.33"		
		Σ =	179°59' 58.50"		
		-	180°00' 00.00"		
		ω =	-1.50"		

Tablica 4.11.	Nesuglasice	figurnog	uvjeta

XI. trokut P11-P1-172Z1					
Stajalište	Vizura	Pravac	Kut		
P11	P1	L11			
P11	172Z1	L12	31°43' 24.83"		
P1	172Z1	L22			
P1 P11		L23	86°30' 39.33"		
172Z1	P11	L18			
172Z1 P1 L20		L20	61°45' 53.00"		
		Σ =	179°59' 57.17"		
		-	180°00' 00.00"		
		ω =	-2.83"		

Tablica 4.12.	Nesuglasice	figurnog	uvjeta
---------------	-------------	----------	--------

XII. trokut P11-P2-172Z1					
Stajalište	Vizura	Pravac	Kut		
P11	P2	L10			
P11	172Z1	L12	36°21' 32.33"		
P2	172Z1	L13			
P2 P11		L15	64°12' 52.50"		
172Z1	172Z1 P11				
172Z1 P2 L		L21	79°25' 36.17"		
		Σ =	180°00' 01.00"		
		-	180°00' 00.00''		
		ω =	1.00"		

XIII. trokut P2-P1-172Z1				
Stajalište	Vizura	Pravac	Kut	
P2	172Z1	L13		
P2	P1	L14	45°36' 54.83"	
P1	172Z1	L22		
P1	P2	L26	116°43' 27.33"	
172Z1 P1		L20		
172Z1 P2 L2		L21	17°39' 43.17"	
	180°00' 05.33"			
		-	180°00' 00.00''	
$\omega = 5.33$				

Tablica 4.13. Nesuglasice figurnog uvjeta

PRILOG 5. I Z J E D N A Č E NJ E D U LJ I N A

Početna	Završna	Horizontalne duljine						
točka	točka	1. g	irus	2. girus		3. g	3. girus	
		Ι.	II.	Ι.	II.	I.	II.	
		m	m	m	m	m	m	m
P5	P2	809.9025	809.9024	809.9004	809.9016	809.9013	809.9027	809.9018
	P1	913.7981	913.8007	913.7991	913.8000	913.7998	913.8025	913.8000
	P11	1297.2316	1297.2343	1297.2308	1297.2318	1297.2312	1297.2332	1297.2322
P4	172Z1	645.4717	645.4742	645.4738	645.4721	645.4723	645.4707	645.4725
	P11	619.4496	619.4865	619.4866	619.4868	619.4864	619.4859	619.4803
	P2	311.3205	311.3208	311.3200	311.3213	311.3204	311.3206	311.3206
	P1	260.1729	260.1728	260.1733	260.1735	260.1734	260.1735	260.1732
P11	P5	1297.2230	1297.2223	1297.2234	1297.2212	1297.2231	1297.2219	1297.2225
	P4	619.4854	619.4867	619.4857	619.4859	619.4861	619.4866	619.4861
	P2	833.9866	833.9880	833.9878	833.9869	833.9877	833.9876	833.9874
	P1	674.2724	674.2718	674.2724	674.2741	674.2729	674.2716	674.2725
	172Z1	763.9150	763.9142	763.9148	763.9129	763.9145	763.9113	763.9138
P2	172Z1	502.9663	502.9659	502.9693	502.9670	502.9671	502.9662	502.9670
	P1	170.8453	170.8453	170.8454	170.8455	170.8455	170.8455	170.8454
	P11	833.9896	833.9896	833.9895	833.9897	833.9898	833.9896	833.9896
	P4	311.3216	311.3213	311.3220	311.3214	311.3217	311.3214	311.3216
	P5	809.8997	809.9010	809.9000	809.8980	809.9001	809.8983	809.8995
P1	172Z1	402.4390	402.4360	402.4380	402.4360	402.4400	402.4370	402.4377
	P11	674.2830	674.2820	674.2830	674.2830	674.2830	674.2830	674.2828
	P4	260.1780	260.1770	260.1770	260.1770	260.1780	260.1770	260.1773
	P5	913.8090	913.8060	913.8070	913.8080	913.8090	913.8070	913.8077
	P2	170.8480	170.8480	170.8480	170.8480	170.8480	170.8480	170.8480
172Z1	P11	763.9320	763.9350	763.9330	763.9220	763.9340	763.9380	763.9323
	P4	645.4860	645.4880	645.4860	645.4890	645.4860	645.4920	645.4878
	P1	402.4420	402.4460	402.4450	402.4450	402.4430	402.4460	402.4445
	P2	502.9770	502.9800	502.9780	502.9810	502.9810	502.9830	502.9800

Tablica 5.1. Mjerene vrijednosti duljina i aritmetičke sredine iz ponovljenih mjerenja

Tablica 5.2. Izjednačenje dvostrukih mjerenja

Oznaka	Sa	Na	→ D _i	← D _i	– D _i	p _i =1/⊡ _i	d	Si	S _{xi}
	stajalista	stajaliste	m	m	m	•••••	mm	mm	mm
D ₁	P5	P2	809.9018	809.8995	809.9007	1.23	-2.3	7.35	5.20
D ₂	P5	P1	913.8000	913.8077	913.8039	1.09	7.6	7.81	5.52
D ₃	P5	P11	1297.2322	1297.2225	1297.2273	0.77	-9.7	9.31	6.58
D ₄	P4	172Z1	645.4725	645.4878	645.4802	1.55	15.4	6.56	4.64
D_5	P4	P11	619.4803	619.4861	619.4832	1.61	5.8	6.43	4.55
D ₆	P4	P2	311.3206	311.3216	311.3211	3.21	1.0	4.56	3.22
D ₇	P4	P1	260.1732	260.1773	260.1753	3.84	4.1	4.17	2.95
D ₈	P11	P2	833.9874	833.9896	833.9885	1.20	2.2	7.46	5.28
D ₉	P11	P1	674.2725	674.2828	674.2777	1.48	10.3	6.71	4.74
D ₁₀	P11	172Z1	763.9138	763.9323	763.9231	1.31	18.6	7.14	5.05
D ₁₁	P2	172Z1	502.9670	502.9800	502.9735	1.99	13.0	5.79	4.10
D ₁₂	P2	P1	170.8454	170.8480	170.8467	5.85	2.6	3.38	2.39
D ₁₃	P1	172Z1	402.4377	402.4445	402.4411	2.48	6.8	5.18	3.67

Ocjena točnosti:

$$s_o = \sqrt{\frac{d^t P d}{2 n}} = \sqrt{\frac{1735.8506}{26}} = 8.17 \text{mm/km}$$
.

PRILOG 6.

RAČUNANJE NESUGLASICA UVJETA HORIZONTA-DULJINE

6.1 Geodetski četverokut P1-P2-P5-P11

Slika 6.1. Geodetski četverokut

$$L = \begin{bmatrix} D_{12} \\ D_{2} \\ D_{1} \\ D_{9} \\ D_{3} \\ D_{8} \end{bmatrix} = \begin{bmatrix} 170.8467 \\ 913.8039 \\ 809.9007 \\ 674.2777 \\ 1297.2273 \\ 833.9885 \end{bmatrix} = \begin{bmatrix} s_{1} \\ s_{2} \\ s_{3} \\ r_{1} \\ r_{2} \\ r_{3} \end{bmatrix}$$
$$\omega = \sum_{i=1}^{3} \left(\arccos \frac{r^{2}_{i-1} + r_{i}^{2} - s_{i}^{2}}{2 r_{i-1} r_{i}} \right) - 360^{\circ}$$

I. četverokut P1-P2-P5-P11						
Kut	Kut ° ' "					
α ₁	4	38	12.85			
α2	318	06	57.50			
α3	37	14	52.01			
Σ	02.35					
-360 00 00.00						
ω = 2.35						

6.2. Geodetski četverokut P2-P4-P11-172Z1

$$L = \begin{bmatrix} D_8 \\ D_5 \\ D_6 \\ D_{10} \\ D_4 \\ D_{11} \end{bmatrix} = \begin{bmatrix} 833.9885 \\ 619.4832 \\ 311.3211 \\ 763.9231 \\ 645.4802 \\ 502.9735 \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ r_1 \\ r_2 \\ r_3 \end{bmatrix}$$
$$\omega = \sum_{i=1}^3 (\arccos \frac{r_{i-1}^2 + r_i^2 - s_i^2}{2r_{i-1} r_i}) - 360^\circ$$

II. četverokut P2-P4-P11-172Z1						
Kut	o ' ''					
α ₁	280	34	28.15			
α2	51	18	39.42			
α3	28	06	50.85			
Σ	58.42					
-360 00 00.00						
ω = -1.58						

6.3. Geodetski četverokut P1-P2-P11-172Z1

Slika 6.3. Centralni sustav

$$L = \begin{bmatrix} D_{10} \\ D_8 \\ D_{11} \\ D_9 \\ D_{12} \\ D_{13} \end{bmatrix} = \begin{bmatrix} 763.9231 \\ 833.9885 \\ 502.9735 \\ 674.2777 \\ 170.8467 \\ 402.4411 \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ r_1 \\ r_2 \\ r_3 \end{bmatrix}$$
$$\omega = \sum_{i=1}^{3} (\arccos \frac{r_{i-1}^2 + r_i^2 - s_i^2}{2r_i - r_i}) - 360^\circ$$

$$\sum_{i=1}^{4} (a_{i} + b_{i} + b_{i}) = 2 r_{i-1} r_{i}$$

III. četverokut P1-P2-P11-172Z1						
Kut	0 1 11					
α ₁	86	30	38.52			
α2	156	45	26,69			
α3	43	21.26				
Σ 359 59 26.47						
-360 00 00.00						
ω = -33.53						

6.4. Geodetski četverokut P1-P2-P4-P11

IV. četverokut P1-P2-P4-P11				
Kut	0		"	
α ₁	4	38	12.85	
α2	337	18	15.04	
α3	18	03	36,57	
Σ	360	00	4.46	
	-360	00	00.00	
		ω=	4.46	

6.5. Geodetski četverokut P1-P4-P11-172Z1

Slika 6.5. Geodetski četverokut

$$L = \begin{bmatrix} D_4 \\ D_7 \\ D_{13} \\ D_5 \\ D_9 \\ D_{10} \end{bmatrix} = \begin{bmatrix} 645.4802 \\ 260.1753 \\ 402.4411 \\ 619.4832 \\ 674.2777 \\ 763.9231 \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ r_1 \\ r_2 \\ r_3 \end{bmatrix}$$
$$\omega = \sum_{i=1}^3 \left(\arccos \frac{r_{i-1}^2 + r_i^2 - s_i^2}{2r_{i-1}r_i} \right) - 360^\circ$$

V. četverokut P1-P4-P11-172Z1				
Kut	o	I	"	
α ₁	305	34	47.21	
α2	22	41	44.96	
α3	31	43	27.32	
Σ	359	59	59.49	
	-360	00	00.00	
		ω=	-0.51	

6.6. Geodetski četverokut P1-P2-P4-172Z1

Slika 6.6. Centralni sustav

$L = \begin{bmatrix} D_4 \\ D_6 \\ D_{11} \\ D_7 \\ D_{12} \\ D_{13} \end{bmatrix}$	$=\begin{bmatrix} 645.4802\\ 311.3211\\ 502.9735\\ 260.1753\\ 170.8467\\ 402.4411 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	^{-S} 1 S ₂ S ₃ r ₁ r ₂ r ₃
$\omega = \sum_{i=1}^{3} (arc c)$	$\cos \frac{r_{i-1}^2 + r_i^2 - s_i^2}{2 r_{i-1} r_i}$	<u>?</u> -) - 360°

VI. četverokut P1-P2-P4-172Z1				
Kut	o	'	"	
α ₁	153	14	50.21	
α2	90	01	35.23	
α3	116	43	21.26	
Σ	359	59	46.70	
	-360	00	00.00	
		ω=	-13.30	
PRILOG 7.

IZJEDNAČENJE MIKROTRIANGULACIJSKE MREŽE

7.1. Funkcije povezanosti mjerenja i nepoznanica

$$\begin{split} \bar{L}_{1} + \bar{z}_{P5} &= \arctan g \; \frac{\bar{y}_{P2} - \bar{y}_{P5}}{\bar{x}_{P2} - \bar{x}_{P5}} \;, \\ \bar{L}_{2} + \bar{z}_{P5} &= \arctan g \; \frac{\bar{y}_{P1} - \bar{y}_{P5}}{\bar{x}_{P11} - \bar{x}_{P5}} \;, \\ \bar{L}_{3} + \bar{z}_{P5} &= \arctan g \; \frac{\bar{y}_{P11} - \bar{y}_{P5}}{\bar{x}_{P11} - \bar{x}_{P5}} \;, \\ \bar{L}_{4} + \bar{z}_{P4} &= \arctan g \; \frac{\bar{y}_{17221} - \bar{y}_{P4}}{\bar{x}_{17221} - \bar{x}_{P4}} \;, \\ \bar{L}_{5} + \bar{z}_{P4} &= \arctan g \; \frac{\bar{y}_{P2} - \bar{y}_{P4}}{\bar{x}_{P11} - \bar{x}_{P4}} \;, \\ \bar{L}_{6} + \bar{z}_{P4} &= \arctan g \; \frac{\bar{y}_{P2} - \bar{y}_{P4}}{\bar{x}_{P2} - \bar{x}_{P4}} \;, \\ \bar{L}_{6} + \bar{z}_{P4} &= \arctan g \; \frac{\bar{y}_{P2} - \bar{y}_{P4}}{\bar{x}_{P2} - \bar{x}_{P4}} \;, \\ \bar{L}_{7} + \bar{z}_{P4} &= \arctan g \; \frac{\bar{y}_{P5} - \bar{y}_{P11}}{\bar{x}_{P5} - \bar{x}_{P11}} \;, \\ \bar{L}_{8} + \bar{z}_{P11} &= \arctan g \; \frac{\bar{y}_{P2} - \bar{y}_{P11}}{\bar{x}_{P5} - \bar{x}_{P11}} \;, \\ \bar{L}_{9} + \bar{z}_{P11} &= \arctan g \; \frac{\bar{y}_{P2} - \bar{y}_{P11}}{\bar{x}_{P2} - \bar{x}_{P11}} \;, \\ \bar{L}_{10} + \bar{z}_{P11} &= \arctan g \; \frac{\bar{y}_{P2} - \bar{y}_{P11}}{\bar{x}_{P2} - \bar{x}_{P11}} \;, \\ \bar{L}_{10} + \bar{z}_{P11} &= \arctan g \; \frac{\bar{y}_{P2} - \bar{y}_{P11}}{\bar{x}_{P2} - \bar{x}_{P11}} \;, \\ \bar{L}_{11} + \bar{z}_{P11} &= \arctan g \; \frac{\bar{y}_{P1} - \bar{y}_{P21}}{\bar{x}_{P12} - \bar{x}_{P11}} \;, \\ \bar{L}_{12} + \bar{z}_{P11} &= \arctan g \; \frac{\bar{y}_{17221} - \bar{y}_{P21}}{\bar{x}_{17221} - \bar{x}_{P22}} \;, \\ \bar{L}_{13} + \bar{z}_{P2} &= \arctan g \; \frac{\bar{y}_{P1} - \bar{y}_{P2}}{\bar{x}_{P1} - \bar{x}_{P2}} \;, \\ \bar{L}_{14} + \bar{z}_{P2} &= \arctan g \; \frac{\bar{y}_{P1} - \bar{y}_{P2}}{\bar{x}_{P1} - \bar{x}_{P2}} \;, \\ \bar{L}_{15} + \bar{z}_{P2} &= \arctan g \; \frac{\bar{y}_{P4} - \bar{y}_{P2}}{\bar{x}_{P1} - \bar{x}_{P2}} \;, \\ \bar{L}_{16} + \bar{z}_{P2} &= \arctan g \; \frac{\bar{y}_{P4} - \bar{y}_{P2}}{\bar{x}_{P4} - \bar{x}_{P2}} \;, \\ \bar{L}_{16} + \bar{z}_{P2} &= \arctan g \; \frac{\bar{y}_{P4} - \bar{y}_{P2}}{\bar{x}_{P4} - \bar{x}_{P2}} \;, \\ \bar{L}_{16} + \bar{z}_{P2} &= \operatorname{arc} g \; \frac{\bar{y}_{P4} - \bar{y}_{P2}}{\bar{x}_{P4} - \bar{x}_{P2}} \;, \\ \bar{L}_{16} + \bar{z}_{17221} &= \operatorname{arc} g \; \frac{\bar{y}_{P4} - \bar{y}_{17221}}{\bar{x}_{P4} - \bar{x}_{17221}} \;, \\ \bar{L}_{19} + \bar{z}_{17221} &= \operatorname{arc} g \; \frac{\bar{y}_{P4} - \bar{y}_{17221}}{\bar{x}_{P4} - \bar{x}_{17221}} \;, \\ \bar{L}_{19} + \bar{z}_{17221} &= \operatorname{arc} g \; \frac{\bar{y}_{P4} - \bar{y}_{17221}}{\bar{x}_{P4} - \bar{x}_{17221}} \;, \\ \bar{z}_{19} + \bar{z}_{17221} &= \operatorname{arc} g$$

$$\begin{split} \bar{L}_{20} + \bar{z}_{172Z1} &= \arctan tg \ \frac{\bar{y}_{P1} - \bar{y}_{172Z1}}{\bar{x}_{P1} - \bar{x}_{172Z1}} \ , \\ \bar{L}_{21} + \bar{z}_{172Z1} &= \arctan tg \ \frac{\bar{y}_{P2} - \bar{y}_{172Z1}}{\bar{x}_{P2} - \bar{x}_{172Z1}} \ , \\ \bar{L}_{22} + \bar{z}_{P1} &= \arctan tg \ \frac{\bar{y}_{172Z1} - \bar{y}_{P1}}{\bar{x}_{172Z1} - \bar{x}_{P1}} \ , \\ \bar{L}_{23} + \bar{z}_{P1} &= \arctan tg \ \frac{\bar{y}_{P11} - \bar{y}_{P1}}{\bar{x}_{P11} - \bar{x}_{P1}} \ , \\ \bar{L}_{24} + \bar{z}_{P1} &= \arctan tg \ \frac{\bar{y}_{P4} - \bar{y}_{P1}}{\bar{x}_{P4} - \bar{x}_{P1}} \ , \\ \bar{L}_{25} + \bar{z}_{P1} &= \arctan tg \ \frac{\bar{y}_{P5} - \bar{y}_{P1}}{\bar{x}_{P5} - \bar{x}_{P1}} \ , \\ \bar{L}_{26} + \ \bar{z}_{P1} &= \arctan tg \ \frac{\bar{y}_{P2} - \bar{y}_{P1}}{\bar{x}_{P2} - \bar{x}_{P1}} \ . \end{split}$$

7.2. Jednadžbe popravaka

$$\begin{split} & v_{11} = \rho^{*} \frac{y_{P2}^{0} - y_{P3}^{0}}{(d_{2,2}^{0})^{2}} x_{P5} - \rho^{*} \frac{x_{P2}^{0} - x_{P3}^{0}}{(d_{2,3}^{0})^{2}} x_{P2} + \rho^{*} \frac{x_{P2}^{0} - x_{P3}^{0}}{(d_{2,3}^{0})^{2}} y_{P2} - z_{P5} + ((n_{L1} - L_{1}) - z_{P5}^{0}), \\ & v_{12} = \rho^{*} \frac{y_{P1}^{0} - y_{P3}^{0}}{(d_{1,3}^{0})^{2}} x_{P5} - \rho^{*} \frac{x_{P1}^{0} - x_{P3}^{0}}{(d_{1,5}^{0})^{2}} y_{P5} - \rho^{*} \frac{y_{P1}^{0} - y_{P3}^{0}}{(d_{1,5}^{0})^{2}} x_{P1} + \rho^{*} \frac{x_{P1}^{0} - x_{P3}^{0}}{(d_{1,5}^{0})^{2}} y_{P1} - z_{P5} + ((n_{L2} - L_{2}) - z_{P5}^{*}), \\ & v_{13} = \rho^{*} \frac{y_{P1}^{0} - y_{P3}^{0}}{(d_{11,5}^{0})^{2}} x_{P5} - \rho^{*} \frac{x_{P1}^{0} - x_{P3}^{0}}{(d_{11,5}^{0})^{2}} y_{P5} - \rho^{*} \frac{y_{P1}^{0} - y_{P3}^{0}}{(d_{11,5}^{0})^{2}} x_{P11} + \rho^{*} \frac{x_{P1}^{0} - x_{P3}^{0}}{(d_{11,5}^{0})^{2}} y_{P11} - z_{P5} + ((n_{L3} - L_{3}) - z_{P5}^{*}), \\ & v_{L4} = \rho^{*} \frac{y_{17221}^{0} - y_{P3}^{0}}{(d_{11221-4}^{0})^{2}} x_{P4} - \rho^{*} \frac{y_{17221}^{0} - y_{P3}^{0}}{(d_{17221-4}^{0})^{2}} x_{17221} + \rho^{*} \frac{x_{17221}^{0} - x_{P4}^{0}}{(d_{11221-4}^{0})^{2}} y_{17221} - z_{P4} + ((n_{L5} - L_{5}) - z_{P4}^{*}), \\ & v_{L5} = \rho^{*} \frac{y_{P1}^{0} - y_{P4}^{0}}{(d_{11,4}^{0})^{2}} x_{P4} - \rho^{*} \frac{x_{P1}^{0} - x_{P4}^{0}}{(d_{2,4}^{0})^{2}} x_{P1} + \rho^{*} \frac{x_{P1}^{0} - x_{P4}^{0}}{(d_{2,4}^{0})^{2}} y_{P1} - z_{P4} + ((n_{L5} - L_{5}) - z_{P4}^{*}), \\ & v_{L5} = \rho^{*} \frac{y_{P2}^{0} - y_{P4}^{0}}{(d_{2,4}^{0})^{2}} x_{P4} - \rho^{*} \frac{x_{P2}^{0} - x_{P4}^{0}}{(d_{2,4}^{0})^{2}} x_{P1} + \rho^{*} \frac{x_{P2}^{0} - x_{P4}^{0}}{(d_{2,4}^{0})^{2}} y_{P1} - z_{P4} + ((n_{L5} - L_{5}) - z_{P4}^{*}), \\ & v_{L5} = \rho^{*} \frac{y_{P2}^{0} - y_{P4}^{0}}{(d_{2,4}^{0})^{2}} x_{P4} - \rho^{*} \frac{x_{P2}^{0} - x_{P4}^{0}}{(d_{2,4}^{0})^{2}} x_{P1} + \rho^{*} \frac{x_{P2}^{0} - x_{P4}^{0}}{(d_{2,4}^{0})^{2}} x_{P1} - z_{P4} + ((n_{L5} - L_{5}) - z_{P4}^{*}), \\ & v_{L5} = \rho^{*} \frac{y_{P2}^{0} - y_{P4}^{0}}{(d_{2,4}^{0})^{2}} x_{P4} - \rho^{*} \frac{x_{P4}^{0} - x_{P4}^{0}}{(d_{2,4}^{0})^{2}} x_{P1} + \rho^{*} \frac{x_{P4}^{0} - x_{P4}^{0}}{(d_{2,4}^{0})^{2}} y_{P5} - z_{P4} + ((n_{L5} - L_{5}$$

$$v_{L13} = \rho'' \frac{y_{172Z1}^{0} - y_{P2}^{0}}{(d_{172Z1-2}^{0})^{2}} x_{P2} - \rho'' \frac{x_{172Z1}^{0} - x_{P2}^{0}}{(d_{172Z1-2}^{0})^{2}} y_{P2} - \rho'' \frac{y_{172Z1}^{0} - y_{P2}^{0}}{(d_{172Z1-2}^{0})^{2}} x_{172Z1} + \rho'' \frac{x_{172Z1}^{0} - x_{P2}^{0}}{(d_{172Z1-2}^{0})^{2}} y_{172Z1} - z_{P2} + \rho'' \frac{y_{172Z1}^{0} - y_{P2}^{0}}{(d_{172Z1-2}^{0})^{2}} x_{172Z1-2} + \rho'' \frac{x_{172Z1}^{0} - x_{P2}^{0}}{(d_{172Z1-2}^{0})^{2}} y_{172Z1} - z_{P2} + \rho'' \frac{y_{172Z1}^{0} - y_{P2}^{0}}{(d_{172Z1-2}^{0})^{2}} x_{172Z1-2} + \rho'' \frac{y_{17Z2}^{0} - y_{P2}^{0}}{(d_{172Z1-2}^{0})^{2}} x_{17Z2-2} + \rho'' \frac{y_{17Z2}^{0} - y_{17Z2-2}^{0}}{(d_{17Z2-2}^{0})^{2}} x_{17Z2-2} + \rho'' \frac{y_{17Z2}^{0} - y_{17Z2-2}^{0}}{(d_{17Z2-2}^{0})^{2}} x_{17Z2-2} + \rho'' \frac{y_{17Z2-2}^{0} - y_{17Z$$

$$((n_{L13} - L_{13}) - z_{P2}),$$

$$v_{L14} = \rho'' \frac{y_{P1}^{0} - y_{P2}^{0}}{(d_{1-2}^{0})^{2}} x_{P2} - \rho'' \frac{x_{P1}^{0} - x_{P2}^{0}}{(d_{1-2}^{0})^{2}} y_{P2} - \rho'' \frac{y_{P1}^{0} - y_{P2}^{0}}{(d_{1-2}^{0})^{2}} x_{P1} + \rho'' \frac{x_{P1}^{0} - x_{P2}^{0}}{(d_{1-2}^{0})^{2}} y_{P1} - z_{P2} + ((n_{L14} - L_{14}) - z_{P2}^{\circ}),$$

$$v_{L15} = \rho'' \frac{y_{P11}^{0} - y_{P2}^{0}}{(d_{11-2}^{0})^{2}} x_{P2} - \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{11-2}^{0})^{2}} y_{P2} - \rho'' \frac{y_{P11}^{0} - y_{P2}^{0}}{(d_{11-2}^{0})^{2}} x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{11-2}^{0})^{2}} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{11-2}^{0})^{2}} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{11-2}^{0})^{2}} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{11-2}^{0})^{2}} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{11-2}^{0})^{2}} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{11-2}^{0})^{2}} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{P11}^{0} - y_{P2}^{0})} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{P11}^{0} - y_{P2}^{0})} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{P11}^{0} - y_{P2}^{0})} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{P2}^{0}}{(d_{P11}^{0} - y_{P2}^{0})} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - y_{P2}^{0}}{(d_{P11}^{0} - y_{P2}^{0})} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P11} + \rho'' \frac{x_{P11}^{0} - y_{P2}^{0}}{(d_{P11}^{0} - y_{P2}^{0})} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P1} + \rho'' \frac{x_{P11}^{0} - y_{P2}^{0}}{(d_{P11}^{0} - y_{P2}^{0})} y_{P11} - z_{P2} + ((n_{P11}^{0} - y_{P2}^{0}) x_{P1} + \rho'' \frac{x_{P11}^{0} - y_{P2}^{0}}{(d_{P11}^{0} - y_{P2}^{0})} y_{P11} - z_{P2} + ((n_{P11$$

 $((n_{L15} - L_{15}) - z_{P2} \circ),$

$$v_{L16} = \rho'' \frac{y_{P4}^{0} - y_{P2}^{0}}{(d_{4-2}^{0})^{2}} x_{P2} - \rho'' \frac{x_{P4}^{0} - x_{P2}^{0}}{(d_{4-2}^{0})^{2}} y_{P2} - \rho'' \frac{y_{P4}^{0} - y_{P2}^{0}}{(d_{4-2}^{0})^{2}} x_{P4} + \rho'' \frac{x_{P4}^{0} - x_{P2}^{0}}{(d_{4-2}^{0})^{2}} y_{P4} - z_{P2} + ((n_{L16} - L_{16}) - z_{P2}^{\circ}),$$

$$v_{L17} = \rho'' \frac{y_{P5}^{0} - y_{P2}^{0}}{(d_{5-2}^{0})^{2}} x_{P2} - \rho'' \frac{x_{P5}^{0} - x_{P2}^{0}}{(d_{5-2}^{0})^{2}} y_{P2} - \rho'' \frac{y_{P5}^{0} - y_{P2}^{0}}{(d_{5-2}^{0})^{2}} x_{P5} + \rho'' \frac{x_{P5}^{0} - x_{P2}^{0}}{(d_{5-2}^{0})^{2}} y_{P5} - z_{P2} + ((n_{L17} - L_{17}) - z_{P2}^{\circ}),$$

$$v_{L18} = \rho'' \frac{y_{P11}^{0} - y_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} x_{17221} - \rho'' \frac{x_{P11}^{0} - x_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} y_{17221} - \rho'' \frac{y_{P11}^{0} - y_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} y_{P11} - \rho'' \frac{y_{P11}^{0} - y_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} y_{P11} - \rho'' \frac{y_{P11}^{0} - y_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} y_{P11} - \rho'' \frac{y_{P11}^{0} - y_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} y_{P11} - \rho'' \frac{y_{P11}^{0} - y_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} y_{P11} - \rho'' \frac{y_{P11}^{0} - y_{P11}^{0}}{(d_{11 - 17221}^{0})^{2}} x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} y_{P11} - \rho'' \frac{y_{P11}^{0} - y_{P11}^{0}}{(d_{11 - 17221}^{0})^{2}} x_{P11} + \rho'' \frac{x_{P11}^{0} - x_{17221}^{0}}{(d_{11 - 17221}^{0})^{2}} y_{P11} - \rho'' \frac{y_{P11}^{0} - y_{P11}^{0}}{(d_{11 - 17221}^{0})^{2}} x_{P11} - \rho'' \frac{y_{P11}^{0} - y_{P11}^{0}}{(d_{11 - 17221}^{0})^{2}} y_{P11} - \rho'' \frac{y_{P11}^{0} - y_{P11}^{0}}{(d_{11 - 17221}^{0})^{2}} x_{P11} - \rho'' \frac{y_{P11}^{0} - \gamma'' \frac{y_{P11}^{0}}{(d_{11 - 17221}^{0})^{2}}} x_{P$$

$$v_{L19} = \rho'' \frac{y_{P4}^{0} - y_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}} x_{172Z1} - \rho'' \frac{x_{P4}^{0} - x_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}} y_{172Z1} - \rho'' \frac{y_{P4}^{0} - y_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}} x_{P4} + \rho'' \frac{x_{P4}^{0} - x_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}} y_{P4} - z_{172Z1} + \rho'' \frac{y_{P4}^{0} - y_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}} x_{P4} + \rho'' \frac{x_{P4}^{0} - x_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}} y_{P4} - z_{172Z1} + \rho'' \frac{y_{P4}^{0} - y_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}} x_{P4} + \rho'' \frac{x_{P4}^{0} - x_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}} y_{P4} - z_{172Z1} + \rho'' \frac{y_{P4}^{0} - y_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}} x_{P4} + \rho'' \frac{x_{P4}^{0} - x_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}} x_{P4} + \rho'' \frac{x_{P4}^{0} - x_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}}} x_{P4} + \rho'' \frac{x_{P4}^{0} - x_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}}} x_{P4} + \rho'' \frac{x_{P4}^{0} - x_{P4}^{0} - x_{172Z1}^{0}}{(d_{4-172Z1}^{0})^{2}}} x_{P4$$

 $((n_{L21} - L_{21}) - z_{172Z1}),$

$$v_{L20} = \rho'' \frac{y_{P1}^{0} - y_{172Z1}^{0}}{(d_{1-172Z1}^{0})^{2}} x_{172Z1} - \rho'' \frac{x_{P1}^{0} - x_{172Z1}^{0}}{(d_{1-172Z1}^{0})^{2}} y_{172Z1} - \rho'' \frac{y_{P1}^{0} - y_{172Z1}^{0}}{(d_{1-172Z1}^{0})^{2}} x_{P1} + \rho'' \frac{x_{P1}^{0} - x_{172Z1}^{0}}{(d_{1-172Z1}^{0})^{2}} y_{P1} - z_{172Z1} + \rho'' \frac{y_{P1}^{0} - y_{172Z1}^{0}}{(d_{1-172Z1}^{0})^{2}} x_{P1} + \rho'' \frac{x_{P1}^{0} - x_{172Z1}^{0}}{(d_{1-172Z1}^{0})^{2}} y_{P1} - z_{172Z1} + \rho'' \frac{y_{P1}^{0} - y_{172Z1}^{0}}{(d_{1-172Z1}^{0})^{2}} x_{P1} + \rho'' \frac{x_{P1}^{0} - x_{172Z1}^{0}}{(d_{1-172Z1}^{0})^{2}} y_{P1} - z_{172Z1} + \rho'' \frac{y_{P1}^{0} - y_{172Z1}^{0}}{(d_{1-172Z1}^{0})^{2}} x_{P1} + \rho'' \frac{x_{P1}^{0} - x_{172Z1}^{0}}{(d_{1-172Z1}^{0})^{2}} x_{P1} + \rho'' \frac{x_{P1}^{0} - x_{P1}^{0}}{(d_{1-172Z1}^{0})^{2}} x_{P1} + \rho'' \frac{x_{P1}^{0} - x_{P1}^{0}}{(d_{1-172Z1}^{0})^{2}}} x_{P1} + \rho'' \frac{x_{P1}^{0} - x_{P1}^{0}}{($$

$$((n_{L20} - L_{20}) - z_{172Z1}^{\circ}),$$

$$v_{L21} = \rho'' \frac{y_{P2}^{\circ} - y_{172Z1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} x_{172Z1} - \rho'' \frac{x_{P2}^{\circ} - x_{172Z1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} y_{172Z1} - \rho'' \frac{y_{P2}^{\circ} - y_{172Z1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} x_{P2} + \rho'' \frac{x_{P1}^{\circ} - x_{172Z1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} y_{P2} - z_{172Z1} + p'' \frac{y_{P2}^{\circ} - y_{172Z1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} x_{P2} + \rho'' \frac{x_{P1}^{\circ} - x_{172Z1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} y_{P2} - z_{172Z1} + p'' \frac{y_{P2}^{\circ} - y_{172Z1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} x_{P2} + \rho'' \frac{x_{P1}^{\circ} - x_{172Z1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} y_{P2} - z_{172Z1} + p'' \frac{y_{P2}^{\circ} - y_{172Z1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} x_{P2} + \rho'' \frac{x_{P1}^{\circ} - x_{172Z1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} x_{P2} + \rho'' \frac{x_{P1}^{\circ} - x_{P1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} x_{P2} + \rho'' \frac{x_{P1}^{\circ}}{(d_{2-172Z1}^{\circ})^{2}} x_{P1} + \rho'' \frac{$$

$$v_{L22} = \rho'' \frac{y_{172Z1}^{0} - y_{P1}^{0}}{(d_{172Z1-1}^{0})^{2}} x_{P1} - \rho'' \frac{x_{172Z1}^{0} - x_{P1}^{0}}{(d_{172Z1-1}^{0})^{2}} y_{P1} - \rho'' \frac{y_{172Z1}^{0} - y_{P1}^{0}}{(d_{172Z1-1}^{0})^{2}} x_{172Z1} + \rho'' \frac{x_{172Z1}^{0} - x_{P1}^{0}}{(d_{172Z1-1}^{0})^{2}} y_{172Z1} - z_{P1} + \rho'' \frac{y_{172Z1}^{0} - y_{P1}^{0}}{(d_{172Z1-1}^{0})^{2}} x_{172Z1-1} + \rho'' \frac{x_{172Z1}^{0} - x_{P1}^{0}}{(d_{172Z1-1}^{0})^{2}} y_{172Z1} - z_{P1} + \rho'' \frac{y_{172Z1}^{0} - y_{P1}^{0}}{(d_{172Z1-1}^{0})^{2}} x_{172Z1-1} + \rho'' \frac{y_{17Z1}^{0} - y_{P1}^{0}}{(d_{172Z1-1}^{0})^{2}} x_{17Z1-1} + \rho'' \frac{y_{17Z1}^{0} - y_{17Z1-1}^{0}}{(d_{172Z1-1}^{0})^{2}} x_{17Z1-1} + \rho'' \frac{y_{17Z1}^{0} - y_{17Z1-1}^{0}}{(d_{17Z1-1}^{0})^{2}} x_{17Z1-1} + \rho'' \frac{y_{17Z1-1}^{0} - y_{17Z1-1}^{0}}{(d_{17Z1-1}^{0})^{2}} x_{17Z1-1} + \rho'' \frac{y_{17Z1-1}^{0} - y_{17Z1-1}^{0}}{(d_{17Z1-1}^{0})^{2}} x_{17Z1-1} + \rho'' \frac{y_{17Z1-1}^{0} - y_{17Z1-1}^$$

$$((n_{L22} - L_{22}) - z_{P1}^{\circ}),$$

$$v_{L23} = \rho'' \frac{y_{P11}^{\circ} - y_{P1}^{\circ}}{(d_{11-1}^{\circ})^{2}} x_{P1} - \rho'' \frac{x_{P11}^{\circ} - x_{P1}^{\circ}}{(d_{11-1}^{\circ})^{2}} y_{P1} - \rho'' \frac{y_{P11}^{\circ} - y_{P1}^{\circ}}{(d_{11-1}^{\circ})^{2}} x_{P11} + \rho'' \frac{x_{P11}^{\circ} - x_{P1}^{\circ}}{(d_{11-1}^{\circ})^{2}} y_{P11} - z_{P1} + ((n_{L23} - L_{23}) - z_{P1}^{\circ}),$$

$$v_{L24} = \rho'' \frac{y_{P4}^{\circ} - y_{P1}^{\circ}}{(d_{4-1}^{\circ})^{2}} x_{P1} - \rho'' \frac{x_{P4}^{\circ} - x_{P1}^{\circ}}{(d_{4-1}^{\circ})^{2}} y_{P1} - \rho'' \frac{y_{P4}^{\circ} - y_{P1}^{\circ}}{(d_{4-1}^{\circ})^{2}} x_{P4} + \rho'' \frac{x_{P4}^{\circ} - x_{P1}^{\circ}}{(d_{4-1}^{\circ})^{2}} y_{P4} - z_{P1} + ((n_{L24} - L_{24}) - z_{P1}^{\circ}),$$

$$v_{L25} = \rho'' \frac{y_{P5}^{0} - y_{P1}^{0}}{(d_{5-1}^{0})^{2}} x_{P1} - \rho'' \frac{x_{P5}^{0} - x_{P1}^{0}}{(d_{5-1}^{0})^{2}} y_{P1} - \rho'' \frac{y_{P5}^{0} - y_{P1}^{0}}{(d_{5-1}^{0})^{2}} x_{P5} + \rho'' \frac{x_{P5}^{0} - x_{P1}^{0}}{(d_{5-1}^{0})^{2}} y_{P5} - z_{P1} + ((n_{L25} - L_{25}) - z_{P1}^{\circ}),$$

$$v_{L26} = \rho'' \frac{y_{P2}^{0} - y_{P1}^{0}}{(d_{2-1}^{0})^{2}} x_{P1} - \rho'' \frac{x_{P2}^{0} - x_{P1}^{0}}{(d_{2-1}^{0})^{2}} y_{P1} - \rho'' \frac{y_{P2}^{0} - y_{P1}^{0}}{(d_{2-1}^{0})^{2}} x_{P2} + \rho'' \frac{x_{P2}^{0} - x_{P1}^{0}}{(d_{2-1}^{0})^{2}} y_{P2} - z_{P1} + ((n_{L26} - L_{26}) - z_{P1}^{\circ}).$$

7.3. Elementi jednadžbi popravaka

Tablica 7.3.1. Elementi jednadžbi popravaka

Pravac	Približ smje	na vrije ernog l n:	ednost kuta	Kutovi orijentacije z [°] i			Koeficijer	nti smjera	Prikrać. mjerenje - I	Težina
	0	'	"	0	'	"	a _i	b _i	"	pi
L ₁	289	33	17.78	289	33	17.78	- 239.99	- 85.24	- 2.41	1.33
L ₂	298	35	47.74	289	33	17.74	- 198.19	- 108.04	- 2.45	1.33
L ₃	328	06	38.72	289	33	25.05	- 84.00	- 135.01	4.86	1.33
L ₄	273	01	30.02	273	01	30.02	- 319.13	- 16.86	- 11.84	1.00
L ₅	347	18	08.48	273	02	2.65	- 73.20	- 324.86	20.78	1.00
L ₆	223	26	48.33	273	01	40.33	- 455.62	481.02	- 1.53	1.00
L ₇	256	43	41.95	273	01	34.45	- 771.63	182.00	- 7.41	1.00
L ₈	148	06	38.72	148	06	38.72	84.00	135.01	- 13.47	1.79
L ₉	167	18	08.48	148	06	53.98	73.20	324.86	1.79	1.79
L ₁₀	185	21	45.57	148	07	2.9	- 23.12	246.26	10.70	1.79
L ₁₁	189	59	57.89	148	06	57.72	- 53.12	301.28	5.53	1.79
L ₁₂	221	43	12.64	148	06	47.64	- 179.69	201.53	- 4.55	1.79
L ₁₃	301	08	27.27	301	08	27.27	- 351.03	- 212.10	- 8.98	6.41
L ₁₄	346	45	28.81	301	08	33.98	- 276.57	- 1175.27	- 2.27	6.41
L ₁₅	5	21	45.57	301	08	53.07	23.12	- 246.26	16.82	6.41
L ₁₆	43	26	48.33	301	08	33.16	455.62	- 481.02	- 3.09	6.41
L ₁₇	109	33	17.78	301	08	33.78	239.99	85.24	- 2.47	6.41
L ₁₈	41	43	12.64	41	43	12.64	179.69	- 201.53	17.86	4.68
L ₁₉	93	01	30.02	41	42	47.69	319.13	16.86	- 7.08	4.68
L ₂₀	103	28	40.68	41	42	47.68	498.47	119.47	- 7.10	4.68
L ₂₁	121	08	27.27	41	42	51.1	351.03	212.10	- 3.68	4.68
L ₂₂	283	28	40.68	283	28	40.68	- 498.47	- 119.47	- 14.46	2.81
L ₂₃	9	59	57.89	283	29	18.56	53.12	- 301.28	23.42	2.81
L ₂₄	76	43	41.95	283	28	47.28	771.63	- 182.00	- 7.86	2.81
L ₂₅	118	35	47.74	283	28	53.07	198.19	108.04	- 2.08	2.81
L ₂₆	166	45	28.81	283	28	56.14	276.57	1175.27	0.99	2.81

7.4. Reducirane koordinate

	Približne koord	dinate mreže	Reducirane koordinate			
Točka	Уi°	x i°	y i ^{or}	x ^{or}		
	m	m	m	m		
P1	4383.2880	7035.2020	- 136.7393	- 35.6377		
P2	4422.4210	6868.9060	- 97.6063	- 201.9337		
P4	4636.5100	7094.9290	116.4827	24.0893		
P5	5185.6150	6597.8210	665.5877	- 473.0187		
P11	4500.3600	7699.1900	- 19.6673	628.3503		
172Z1	3991.9700	7128.9900	- 528.0573	58.1503		
	У°	x°				
T _o	4520.0273	7070.8397				

Tablica 7.4.1. Približne koordinate točaka mreže, težište mreže i reducirane koordinate

7.5. Približna vrijednost nepoznanice kuta orijentacije i matrica Q_{xx}

Tablica 7.5.1. Približni smjerni kut, mjereni pravac i približna vrijednost kuta orijentacije

Točka P5		n _{ri}			Li		n _{ri} -L _i		
	0	'	"	0	I	"	0	'	
P5→P2	289	33	17.78	00	00	00.00	289	33	17.78
P5→P1	298	35	47.74	9	02	30.00	289	33	17.74
P5→P11	328	06	38.72	38	33	13.67	289	33	25.05
						Z _{P5} °	289	33	20.19

Tablica 7.5.2. Približni smjerni kut, mjereni pravac i približna vrijednost kuta orijentacije

Točka P4		n _{ri}			Li		n _{ri} -L _i		
	0	ľ	"	o	'	"	0	ı	"
P4→172Z1	273	01	30.02	00	00	00.00	273	01	30.02
P4→P11	347	18	08.48	74	16	05.83	273	02	02.65
P4→P2	223	26	48.33	310	25	08.00	273	01	40.33
P4→P1	256	43	41.95	343	42	07.50	273	01	34.45
						Z _{P4} °	273	01	41.86

Tablica 7.5	.3. Približni	smjerni kut,	mjereni	pravac i	približna	vrijednost	kuta (orijentacije	э
		, ,	,			,		, ,	

Točka P11	n _{ri}				Li		n _{ri} -L _i		
	o	ľ	"	o	'	"	0	'	"
P11→P5	148	06	38.72	00	00	00.00	148	06	38.72
P11→P4	167	18	08.48	19	11	14.50	148	06	53.98
P11→P2	185	21	45.57	37	14	42.67	148	07	02.90
P11→P1	189	59	57.89	41	53	00.17	148	06	57.72
P11→172Z1	221	43	12.64	73	36	25.00	148	06	47.64
						Z _{P11} °	148	06	52.19

Točka P2		n _{ri}		Li			n _{ri} -L _i		
	o	'	"	o	1	"	o	'	"
P2→172Z1	301	08	27.27	00	00	00.00	301	08	27.27
P2→P1	346	45	28.81	45	36	54.83	301	08	33.98
P2→P11	5	21	45.57	64	12	52.50	301	08	53.07
P2→P4	43	26	48.33	102	18	15.17	301	08	33.16
P2→P5	109	33	17.78	168	24	44.00	301	08	33.78
						Z _{P2} °	301	08	36.25

Tablica 7.5.4. Približni smjerni kut, mjereni pravac i približna vrijednost kuta orijentacije

Tablica 7.5.5. Približni smjerni kut	, mjereni pravac	i približna vrijednost	kuta orijentacije
--------------------------------------	------------------	------------------------	-------------------

Točka 172Z1	n _{ri}			Li			n _{ri} -L _i		
	0	'	"	o	I	"	0	Ţ	"
172Z1→P11	41	43	12.64	00	00	00.00	41	43	12.64
172Z1→P4	93	01	30.02	51	18	42.33	41	42	47.69
172Z1→P1	103	28	40.68	61	45	53.00	41	42	47.68
172Z1→P2	121	08	27.27	79	25	36.17	41	42	51.10
						Z _{172Z1} °	41	42	54.78

Tablica 7.5.6. Približni smjerni kut, mjereni pravac i približna vrijednost kuta orijentacije

Točka P1		n _{ri}			Li		n _{ri} -L _i		
	0	ı	"	0	ı	"	0	I	"
P1→172Z1	283	28	40.68	00	00	0.00	283	28	40.68
P1→P11	9	59	57.89	86	30	39.33	283	29	18.56
P1→P4	76	43	41.95	153	14	54.67	283	28	47.28
P1→P5	118	35	47.74	195	06	54.67	283	28	53.07
P1→P2	166	45	28.81	243	16	32.67	283	28	56.14
						Z _{P1} °	283	28	55.15

Matrica $(\mathbf{Q}_{\mathbf{xx}})^* 10^7$

7.69	-5.10	8.08	-6.36	4.05	-8.21	-8.70	16.17	-14.94	-4.74	3.82	8.25	
-5.10	6.76	-7.05	7.85	-3.91	7.10	6.59	-14.27	11.10	2.27	-1.62	-9.72	
8.08	-7.05	18.65	-11.69	2.94	-19.98	-13.81	29.15	-22.10	-6.20	6.24	15.78	
-6.36	7.85	-11.69	11.29	-3.89	12.36	9.34	-21.36	15.88	3.40	-3.27	-13.55	
4.05	-3.92	2.94	-3.89	8.01	1.02	-6.36	6.20	-8.72	-3.62	0.08	4.20	
-8.21	7.10	-19.98	12.36	1.02	28.94	12.86	-33.59	21.57	3.82	-7.25	-18.63	
-8.70	6.59	-13.81	9.34	-6.36	12.85	14.40	-22.49	18.76	8.44	-4.29	-14.74	
16.17	-14.27	29.15	-21.36	6.20	-33.59	-22.49	53.30	-43.35	-10.07	14.33	25.99	
-14.94	11.10	-22.10	15.88	-8.72	21.57	18.76	-43.35	42.20	10.08	-15.20	-15.27	
-4.74	2.27	-6.20	3.40	-3.62	3.82	8.44	-10.07	10.08	7.41	-3.96	-6.83	
3.82	-1.62	6.24	-3.27	0.08	-7.25	-4.29	14.33	-15.20	-3.96	9.36	1.78	
8.25	-9.72	15.78	-13.55	4.20	-18.63	-14.74	25.99	-15.27	-6.83	1.78	22.74	

7.6. Izjednačene vrijednosti mjerenja i definitivna kontrola izjednačenja

Stajalište	Pr or	ibližni ijentac z ^o i	kut iije	Prikraćena vrijed. kuta orijentacije z _i	Izjednačeni kut orijentacije <i>ī</i> i		
	0	1	"		0	'	"
P1	283	28	55.15	2.408	283	28	57.554
P2	301	08	36.25	0.675	301	08	36.924
P4	273	01	41.86	3.255	273	01	45.119
P5	289	33	20.19	2.542	289	33	22.730
P11	148	06	52.19	-12.764	148	06	39.428
172Z1	41	42	54.78	8.190	41	43	02.969

Tablica 7.6.1. Izjednačene vrijednosti kuta orijentacije

Tablica 7.6.2. Izjednačene vrijednosti pravaca

Br.	Mjei	reni pra L _i	avac	Popravak _{Vi}	Izjednačeni pravac Ē _i		Izjednačeni orijentirani smjerni kut			Izjednačeni smjerni kut iz izjednačenih koordinata <u>f</u> i			
	0	'	"	"	o	'	"	o	'	"	o	'	"
L ₁	0	00	0.00	- 1.521	359	59	58.479	289	33	21.247	289	33	21.247
L ₂	9	02	30.00	- 0.057	9	02	29.943	298	35	52.711	298	35	52.711
L_3	38	33	13.67	1.578	38	33	15.248	328	06	38.016	328	06	38.016
L_4	0	00	0.00	0.400	0	00	00.400	273	01	45.682	273	01	45.681
L_5	74	16	5.83	1.047	74	16	06.877	347	17	52.159	347	17	52.161
L ₆	310	25	8.00	- 1.101	310	25	06.899	223	26	52.181	223	26	52.181
L ₇	343	42	7.50	- 0.346	343	42	07.154	256	43	52.436	256	43	52.436
L ₈	0	00	0.00	- 1.386	359	59	58.614	148	06	38.016	148	06	38.016
L ₉	19	11	14.50	- 1.743	19	11	12.757	167	17	52.159	167	17	52.161
L ₁₀	37	14	42.67	7.107	37	14	49.777	185	21	29.179	185	21	29.179
L ₁₁	41	53	0.17	- 2.809	41	52	57.361	189	59	36.763	189	59	36.764
L ₁₂	73	36	25.00	- 1.169	73	36	23.831	221	43	03.233	221	43	3.232
L ₁₃	0	00	0.00	0.849	0	00	00.849	301	08	37.893	301	08	37.893
L ₁₄	45	36	54.83	- 0.654	45	36	54.176	346	45	31.220	346	45	31.220
L ₁₅	64	12	52.50	- 0.365	64	12	52.135	5	21	29.179	365	21	29.179
L ₁₆	102	18	15.17	- 0.033	102	18	15.137	43	26	52.181	403	26	52.181
L ₁₇	168	24	44.00	0.203	168	24	44.203	109	33	21.247	289	33	21.247
L ₁₈	0	00	0.00	0.299	0	00	00.299	41	43	3.233	41	43	3.232
L ₁₉	51	18	42.33	0.418	51	18	42.748	93	01	45.682	93	01	45.681
L ₂₀	61	45	53.00	0.494	61	45	53.494	103	28	56.428	103	28	56.427
L ₂₁	79	25	36.17	- 1.211	79	25	34.959	121	08	37.893	121	08	37.893
L ₂₂	0	00	0.00	- 1.216	359	59	58.784	283	28	56.428	283	28	56.427
L ₂₃	86	30	39.33	- 0.210	86	30	39.120	9	59	36.763	9	59	36.764
L ₂₄	153	14	54.67	0.122	153	14	54.792	76	43	52.436	76	43	52.436
L ₂₅	195	06	54.67	0.397	195	06	55.067	118	35	52.711	118	35	52.711
L ₂₆	243	16	32.67	0.906	243	16	33.576	166	45	31.220	166	45	31.220

Točka	x _o y _o	dx dy	х ӯ	
	m	m	m	
D1	7035.2020	-0.0071	7035.1949	
FI	4383.2880	0.0210	4383.3090	
D 2	6868.9060	-0.0092	6868.8968	
FΖ	4422.4210	0.0195	4422.4405	
D4	7094.9290	-0.0219	7094.9071	
Γ4	4636.5100	0.0155	4636.5255	
DE	6597.8210	-0.0095	6597.8115	
FD	5185.6150	-0.0205	5185.5945	
	7699.1900	0.0203	7699.2103	
PII	4500.3600	-0.0443	4500.3157	
17071	7128.9900	0.0275	7129.0175	
17221	3991.9700	0.0088	3991.9788	

Tablica 7.6.3. Izjednačene vrijednosti nepoznanica

7.7. Ocjena točnosti

Tablica 7 7 1	Ociena	točnosti	miereni	ia i iz	viedna	čenih	mieren	nia
	Objena	1001031	mjerenj	aiiz	jeuna	CEIIIII	плетен	ıjа

Mjerenje	Kofaktor mjerenja q _{ii}	Standarno odstupanje mjerenja s _i	Kofaktor izjednačenog mjerenja q _{ii}	Standarno odstupanje izjednačenog mjerenja <u>s</u> i "
L ₁	0.75	2.495"	0.1167	0.985"
L ₂	0.75	2.495"	0.0193	0.401''
L ₃	0.75	2.495"	0.1832	1.233"
L ₃	1.00	2.882"	0.0710	0.768''
L ₅	1.00	2.882"	0.1809	1.226"
L ₆	1.00	2.882"	0.1697	1.187"
L ₇	1.00	2.882"	0.1202	0.999"
L ₈	0.56	2.155"	0.2711	1.501''
L ₉	0.56	2.155"	0.1714	1.193"
L ₁₀	0.56	2.155"	0.0404	0.580''
L ₁₁	0.56	2.155"	0.0562	0.683"
L ₁₂	0.56	2.155"	0.1857	1.242"
L ₁₃	0.16	1.138"	0.0842	0.836"
L ₁₄	0.16	1.138"	0.0804	0.817"
L ₁₅	0.16	1.138"	0.0524	0.660''
L ₁₆	0.16	1.138"	0.0960	0.893"

L ₁₇	0.16	1.138"	0.0944	0.885''
L ₁₈	0.21	1.332"	0.1061	0.939''
L ₁₉	0.21	1.332"	0.0522	0.659''
L ₂₀	0.21	1.332"	0.0441	0.605''
L ₂₁	0.21	1.332"	0.0892	0.861"
L ₂₂	0.36	1.720"	0.1504	1.118''
L ₂₃	0.36	1.720"	0.0958	0.892"
L ₂₄	0.36	1.720"	0.1809	1.226''
L ₂₅	0.36	1.720"	0.0910	0.869''
L ₂₆	0.36	1.720"	0.1082	0.948''

PRILOG 8.

IZJEDNAČENJE MIKROTRILATERACIJSKE MREŽE

8.1. Funkcije povezanosti mjerenja i nepoznanica

$$\begin{split} d_{1} + v_{1} &= \sqrt{(\bar{x}_{2} - \bar{x}_{5})^{2} + (\bar{y}_{2} - \bar{y}_{5})^{2}} ,\\ d_{2} + v_{2} &= \sqrt{(\bar{x}_{1} - \bar{x}_{5})^{2} + (\bar{y}_{1} - \bar{y}_{5})^{2}} ,\\ d_{3} + v_{3} &= \sqrt{(\bar{x}_{11} - \bar{x}_{5})^{2} + (\bar{y}_{11} - \bar{y}_{5})^{2}} ,\\ d_{4} + v_{4} &= \sqrt{(\bar{x}_{172Z1} - \bar{x}_{4})^{2} + (\bar{y}_{172Z1} - \bar{y}_{4})^{2}} ,\\ d_{5} + v_{5} &= \sqrt{(\bar{x}_{11} - \bar{x}_{4})^{2} + (\bar{y}_{2} - \bar{y}_{4})^{2}} ,\\ d_{6} + v_{6} &= \sqrt{(\bar{x}_{2} - \bar{x}_{4})^{2} + (\bar{y}_{2} - \bar{y}_{4})^{2}} ,\\ d_{7} + v_{7} &= \sqrt{(\bar{x}_{1} - \bar{x}_{4})^{2} + (\bar{y}_{2} - \bar{y}_{4})^{2}} ,\\ d_{8} + v_{8} &= \sqrt{(\bar{x}_{2} - \bar{x}_{11})^{2} + (\bar{y}_{2} - \bar{y}_{11})^{2}} ,\\ d_{9} + v_{9} &= \sqrt{(\bar{x}_{1} - \bar{x}_{11})^{2} + (\bar{y}_{1} - \bar{y}_{11})^{2}} ,\\ d_{10} + v_{10} &= \sqrt{(\bar{x}_{172Z1} - \bar{x}_{11})^{2} + (\bar{y}_{172Z1} - \bar{y}_{2})^{2}} ,\\ d_{11} + v_{11} &= \sqrt{(\bar{x}_{172Z1} - \bar{x}_{2})^{2} + (\bar{y}_{1} - \bar{y}_{2})^{2}} ,\\ d_{12} + v_{12} &= \sqrt{(\bar{x}_{1} - \bar{x}_{2})^{2} + (\bar{y}_{1} - \bar{y}_{2})^{2}} ,\\ d_{13} + v_{13} &= \sqrt{(\bar{x}_{172Z1} - \bar{x}_{1})^{2} + (\bar{y}_{172Z1} - \bar{y}_{1})^{2}} . \end{split}$$

8.2. Jednadžbe popravaka

$$\begin{aligned} v_{1} &= -\frac{x_{2}^{0} - x_{5}^{0}}{d_{5 \cdot 2}^{0}} x_{5} - \frac{y_{2}^{0} - y_{5}^{0}}{d_{5 \cdot 2}^{0}} y_{5} + \frac{x_{2}^{0} - x_{5}^{0}}{d_{5 \cdot 2}^{0}} x_{2} + \frac{y_{2}^{0} - y_{5}^{0}}{d_{5 \cdot 2}^{0}} y_{2} + (d_{5 \cdot 2}^{0} - d_{1}), \\ v_{2} &= -\frac{x_{1}^{0} - x_{5}^{0}}{d_{5 \cdot 1}^{0}} x_{5} - \frac{y_{1}^{0} - y_{5}^{0}}{d_{5 \cdot 1}^{0}} y_{5} + \frac{x_{1}^{0} - x_{5}^{0}}{d_{5 \cdot 1}^{0}} x_{1} + \frac{y_{1}^{0} - y_{5}^{0}}{d_{5 \cdot 1}^{0}} y_{1} + (d_{5 \cdot 1}^{0} - d_{2}), \\ v_{3} &= -\frac{x_{11}^{0} - x_{5}^{0}}{d_{5 \cdot 11}^{0}} x_{5} - \frac{y_{11}^{0} - y_{5}^{0}}{d_{5 \cdot 11}^{0}} y_{5} + \frac{x_{11}^{0} - x_{5}^{0}}{d_{5 \cdot 11}^{0}} x_{11} + \frac{y_{11}^{0} - y_{5}^{0}}{d_{5 \cdot 11}^{0}} y_{11} + (d_{5 \cdot 11}^{0} - d_{3}), \\ v_{4} &= -\frac{x_{17221}^{0} - x_{4}^{0}}{d_{4 \cdot 17221}^{0}} x_{4} - \frac{y_{17221}^{0} - y_{4}^{0}}{d_{4 \cdot 17221}^{0}} y_{4} + \frac{x_{17221}^{0} - x_{4}^{0}}{d_{4 \cdot 17221}^{0}} x_{17221} + \frac{y_{17221}^{0} - y_{4}^{0}}{d_{4 \cdot 17221}^{0}} y_{17221} + (d_{4 \cdot 17221}^{0} - d_{4}), \end{aligned}$$

$$\begin{split} v_{5} &= -\frac{x_{11}^{0} - x_{4}^{0}}{d_{4.11}^{0}} x_{4} - \frac{y_{11}^{0} - y_{4}^{0}}{d_{4.10}} y_{4} + \frac{x_{11}^{0} - x_{4}^{0}}{d_{4.10}} x_{11} + \frac{y_{11}^{0} - y_{4}^{0}}{d_{4.10}} y_{11} + (d_{4.11}^{0} - d_{5}), \\ v_{6} &= -\frac{x_{2}^{0} - x_{4}^{0}}{d_{4.2}^{0}} x_{4} - \frac{y_{2}^{0} - y_{4}^{0}}{d_{4.2}^{0}} y_{4} + \frac{x_{2}^{0} - x_{4}^{0}}{d_{4.2}^{0}} x_{2} + \frac{y_{2}^{0} - y_{4}^{0}}{d_{4.2}^{0}} y_{2} + (d_{4.2}^{0} - d_{6}), \\ v_{7} &= -\frac{x_{1}^{0} - x_{4}^{0}}{d_{4.1}^{0}} x_{4} - \frac{y_{1}^{0} - y_{4}^{0}}{d_{4.1}^{0}} y_{4} + \frac{x_{1}^{0} - x_{4}^{0}}{d_{4.1}^{0}} x_{1} + \frac{y_{1}^{0} - y_{4}^{0}}{d_{4.1}^{0}} y_{1} + (d_{4.1}^{0} - d_{7}), \\ v_{8} &= -\frac{x_{2}^{0} - x_{11}^{0}}{d_{11.2}^{0}} x_{11} - \frac{y_{2}^{0} - y_{11}^{0}}{d_{11.2}^{0}} y_{11} + \frac{x_{2}^{0} - x_{11}^{0}}{d_{11.2}^{0}} x_{2} + \frac{y_{2}^{0} - y_{11}^{0}}{d_{11.2}^{0}} y_{2} + (d_{11.2}^{0} - d_{8}), \\ v_{9} &= -\frac{x_{1}^{0} - x_{11}^{0}}{d_{11.1}^{0}} x_{11} - \frac{y_{1}^{0} - y_{11}^{0}}{d_{11.1}^{0}} y_{11} + \frac{x_{1}^{0} - x_{11}^{0}}{d_{11.2}^{0}} x_{1} + \frac{y_{1}^{0} - y_{11}^{0}}{d_{11.2}^{0}} y_{1} + (d_{11.1}^{0} - d_{9}), \\ v_{10} &= -\frac{x_{17221}^{0} - x_{11}^{0}}{d_{11.1}^{0}} x_{11} - \frac{y_{17221}^{0} - y_{11}^{0}}{d_{11.1}^{0}} y_{11} + \frac{x_{17221}^{0} - x_{2}^{0}}{d_{2.17221}^{0}} x_{17221} + \frac{y_{17221}^{0} - y_{1}^{0}}{d_{11.1}^{0}} y_{17221} + (d_{11.17221}^{0} - d_{10}), \\ v_{11} &= -\frac{x_{17221}^{0} - x_{2}^{0}}{d_{2.17221}^{0}} x_{2} - \frac{y_{1}^{0} - y_{2}^{0}}{d_{2.17221}^{0}} y_{2} + \frac{x_{1}^{0} - x_{2}^{0}}{d_{2.17221}^{0}} x_{17221} + \frac{y_{17221}^{0} - y_{2}^{0}}{d_{2.17221}^{0}} y_{17221} + (d_{2.17221}^{0} - d_{11}), \\ v_{12} &= -\frac{x_{1}^{0} - x_{2}^{0}}{d_{2.1}^{0}} x_{2} - \frac{y_{1}^{0} - y_{2}^{0}}{d_{2.1}^{0}} y_{1} + \frac{x_{1}^{0} - x_{2}^{0}}{d_{2.1}^{0}} x_{1} + \frac{y_{1}^{0} - y_{2}^{0}}{d_{2.1}^{0}} y_{1} + (d_{2.1}^{0} - d_{12}), \\ v_{13} &= -\frac{x_{17221}^{0} - x_{1}^{0}}{d_{1.17221}^{0}} x_{1} - \frac{y_{17221}^{0} - y_{1}^{0}}{d_{1.1722}^{0}} y_{1} + \frac{x_{1}^{17221}^{0} - x_{1}^{0}}{d_{1.17221}^{0}} x_{1} + \frac{y_{1}^{0}$$

8.3 Elementi jednadžbi popravaka

Duljina	Koef. je popra	dnadžbi avaka	Prikrać. mjerenje -l	Težina	
	a	b,	'!	pi	
	-1	-1	m		
D ₁	-0.3347	0.9423	0.0080	1.60	
D ₂	-0.4786	0.8780	-0.0037	1.42	
D ₃	-0.8491	0.5283	-0.0812	1.00	
D ₄	-0.0528	0.9986	-0.0408	2.01	
D ₅	-0.9755	0.2198	-0.0737	2.09	
D ₆	0.7260	0.6877	-0.0005	4.18	
D ₇	0.2296	0.9733	-0.0048	4.98	
D ₈	0.9956	0.0935	-0.0544	1.55	
D ₉	0.9848	0.1736	-0.0478	1.93	
D ₁₀	0.7464	0.6655	0.0065	1.70	
D ₁₁	-0.5171	0.8559	-0.0503	2.58	
D ₁₂	-0.9734	0.2291	-0.0083	7.58	
D ₁₃	-0.2331	0.9725	-0.0408	3.21	

Tablica 8.3.1. Elementi jednadžbi popravaka

8.4. Reducirane koordinate i matrica Q_{xx}

	Približne koord	linate mreže	Reducirane koordinate					
Točka	yi°	xi°	y i ^{or}	xi ^{or}				
	m	m	m	m				
P1	4383.2880	7035.2020	-136.7393	-35.6377				
P2	4422.4210	6868.9060	-97.6063	-201.9337				
P4	4636.5100	7094.9290	116.4827	24.0893				
P5	5185.6150	6597.8210	665.5877	-473.0187				
P11	4500.3600	7699.1900	-19.6673	628.3503				
172Z1	3991.9700	7128.9900	-528.0573	58.1503				
	У°	x°						
T _o	4520.0273	7070.8397						

Tablica 8.4.1. Približne koordinate mreže, težište mreže i reducirane koordinate

Matrica Qxx

0.157610.061060.085650.031780.019790.072250.0122750.072080.016270.085550.015657-0.007470.061060.144020.042290.025940.066690.064370.130640.108930.041800.149100.081200.023700.085650.042290.141160.077430.068410.061290.158020.076750.020750.09019-0.009080.031780.025940.077430.240300.190990.012660.239610.130470.062460.156660.123050.008230.019790.066690.068410.190990.37881-0.015280.328630.114610.068000.14349-0.206380.015700.072250.064370.061290.01266-0.015280.16121-0.07627-0.111280.02168-0.13943-0.03260-0.07208-0.13064-0.15802-0.23961-0.32863-0.076270.500460.13661-0.136890.342510.24583-0.067410.01627-0.10893-0.076750.13047-0.11461-0.111280.136610.26347-0.062520.154630.18935-0.067410.016270.041800.020750.062460.068000.02168-0.13689-0.086550.386810.06826-0.09625-0.14910-0.09519-0.15666-0.14349-0.139430.342510.15463-0.086550.386810.06826-0.09625-0.15657-0.08120-0.15795<t

8.5. Izjednačene vrijednosti

Br	Mjerena duljina D:	Popravak _{Vi}	lzjednačene duljina D:	lzjed. duljina iz koordinata ī .
ы.		m		", "
	111	111	[[]	111
D_1	809.9007	0.0017	809.9024	809.9024
D_2	913.8039	-0.0025	913.8014	913.8014
D_3	1297.2273	0.0009	1297.2282	1297.2282
D_4	645.4802	-0.0011	645.4791	645.4791
D_5	619.4832	0.0010	619.4842	619.4842
D_6	311.3211	0.0007	311.3218	311.3218
D ₇	260.1753	0.0000	260.1753	260.1753
D_8	833.9885	0.0012	833.9897	833.9897
D ₉	674.2777	-0.0036	674.2741	674.2741
D ₁₀	763.9231	0.0017	763.9248	763.9248
D ₁₁	502.9735	0.0028	502.9763	502.9763
D ₁₂	170.8467	-0.0009	170.8458	170.8458
D ₁₃	402.4411	-0.0020	402.4391	402.4391

Tablica 8.5.1. Izjednačene vrijednosti duljina i definitivna kontrola izjednačenja

Tablica 8.5.2. Izjednačene vrijednosti nepoznanica

Točka	х _о Уо	dx dy	х ӯ	
	m	m	m	
D1	7035.2020	-0.0109	7035.1911	
FI	4383.2880	0.0131	4383.3011	
DO	6868.9060	-0.0178	6868.8882	
P2	4422.4210	0.0161	4422.4371	
D4	7094.9290	-0.0199	7094.9091	
P4	4636.5100	0.0201	4636.5301	
Dr	6597.8210	-0.0246	6597.7964	
P5	5185.6150	0.0070	5185.6220	
D11	7699.1900	0.0433	7699.2333	
PII	4500.3600	-0.0392	4500.3208	
17074	7128.9900	0.0300	7129.0200	
17221	3991.9700	-0.0171	3991.9529	

8.6. Ocjena točnosti

Mjerenje	Kofaktori mjerenja q _{ii}	Standarna odstupanja mjerenja s _i	Kofaktori izjednačenih mjerenja q _{ii}	Standarna odstupanja izjednačenih mjerenja <u>s_i</u>
D1	0.62	0.0038	0 4517	0.0032
D ₂	0.70	0.0040	0.3526	0.0028
D ₃	1.00	0.0048	0.9549	0.0047
D ₄	0.50	0.0034	0.2536	0.0024
D ₅	0.48	0.0033	0.3883	0.0030
D ₆	0.24	0.0023	0.1900	0.0021
D ₇	0.20	0.0021	0.1517	0.0019
D ₈	0.64	0.0038	0.2425	0.0024
D ₉	0.52	0.0035	0.2808	0.0025
D ₁₀	0.60	0.0037	0.5375	0.0035
D ₁₁	0.39	0.0030	0.2794	0.0025
D ₁₂	0.13	0.0017	0.1095	0.0016
D ₁₃	0.31	0.0027	0.1776	0.0020

Tablica 8.6.1. Ocjena točnosti mjerenja i izjednačenih mjerenja

PRILOG 9.

IZJEDNAČENJE TRIANGULATERACIJSKE MREŽE

9.1. Elementi jednadžbi popravaka

Mierenia	Koef. je popra	dnadžbi avaka	Prikrać. mjerenje	Težina	
	a _i	b _i	-ı _i ", mm	p _i	
L ₁	-0.24	-0.09	-2.41	1.33	
L ₂	-0.20	-0.11	-2.45	1.33	
L ₃	-0.08	-0.14	4.86	1.33	
L ₄	-0.32	-0.02	-11.84	1.00	
L ₅	-0.07	-0.32	20.78	1.00	
L ₆	-0.46	0.48	-1.53	1.00	
L ₇	-0.77	0.18	-7.41	1.00	
L ₈	0.08	0.14	-13.47	1.79	
L ₉	0.07	0.32	1.79	1.79	
L ₁₀	-0.02	0.25	10.70	1.79	
L ₁₁	-0.05	0.30	5.53	1.79	
L ₁₂	-0.18	0.20	-4.55	1.79	
L ₁₃	-0.35	-0.21	-8.98	6.41	
L ₁₄	-0.28	-1.18	-2.27	6.41	
L ₁₅	0.02	-0.25	16.82	6.41	
L ₁₆	0.46	-0.48	-3.09	6.41	
L ₁₇	0.24	0.09	-2.47	6.41	
L ₁₈	0.18	-0.20	17.86	4.68	
L ₁₉	0.32	0.02	-7.08	4.68	
L ₂₀	0.50	0.12	-7.10	4.68	
L ₂₁	0.35	0.21	-3.68	4.68	
L ₂₂	-0.50	-0.12	-14.46	2.81	
L ₂₃	0.05	-0.30	23.42	2.81	
L ₂₄	0.77	-0.18	-7.86	2.81	
L ₂₅	0.20	0.11	-2.08	2.81	
L ₂₆	0.28	1.18	0.99	2.81	
D ₁	-0.33	0.94	8.03	0.05	
D ₂	-0.48	0.88	-3.73	0.05	
D ₃	-0.85	0.53	-81.17	0.03	
D ₄	-0.05	1.00	-40.84	0.07	
D ₅	-0.98	0.22	-73.66	0.07	
D ₆	0.73	0.69	-0.53	0.14	
D ₇	0.23	0.97	-4.79	0.16	
D ₈	1.00	0.09	-54.44	0.05	
D ₉	0.98	0.17	-47.83	0.06	
D ₁₀	0.75	0.67	6.50	0.06	
D ₁₁	-0.52	0.86	-50.29	0.08	
D ₁₂	-0.97	0.23	-8.32	0.25	
D ₁₃	-0.23	0.97	-40.84	0.11	

Tablica 9.1.1. Elementi jednadžbi popravaka

9.2. Reducirane koordinate i matrica Q_{xx}

	Približne koord	linate mreže	Reducirane koordinate					
Točka	yi°	xi°	У i ^{or}	x _i ^{or}				
	m	m	m	m				
P1	4383.2880	7035.2020	-136.7393	-35.6377				
P2	4422.4210	6868.9060	-97.6063	-201.9337				
P4	4636.5100	7094.9290	116.4827	24.0893				
P5	5185.6150	6597.8210	665.5877	-473.0187				
P11	4500.3600	7699.1900	-19.6673	628.3503				
172Z1	3991.9700	7128.9900	-528.0573	58.1503				
	У°	x°						
T _o	4520.0273	7070.8397						

Tablica 9.2.1. Približne koordinate mreže, težište mreže i reducirane koordinate

Matrica $(\mathbf{Q}_{\mathbf{xx}})^* 10^7$

2.95	-1.14	0.87	-0.86	1.34	-0.75	-2.58	3.36	-3.17	-1.52	0.59	0.91
-1.14	3.61	-0.22	3.25	-1.39	0.81	3.85	-7.62	-0.84	-0.17	-0.27	0.11
0.87	-0.22	4.62	-1.36	0.19	-3.52	-1.31	2.70	-4.76	-1.04	0.38	3.44
-0.86	3.25	-1.36	4.31	-0.97	1.87	3.90	-8.72	-0.10	-0.15	-0.61	-0.58
1.34	-1.39	0.19	-0.97	5.01	2.29	-3.47	1.27	-2.00	-1.69	-1.06	0.48
-0.75	0.81	-3.52	1.87	2.29	8.60	1.75	-7.70	1.66	-1.10	-1.43	-2.50
-2.58	3.85	-1.31	3.90	-3.47	1.75	15.39	-19.31	-5.72	4.97	-2.31	4.84
3.36	-7.62	2.70	-8.72	1.27	-7.70	-19.31	36.48	4.24	-2.58	7.74	-9.88
-3.17	-0.84	-4.76	-0.10	-2.00	1.66	-5.72	4.24	19.31	1.07	-3.65	-6.03
-1.52	-0.17	-1.04	-0.15	-1.69	-1.10	4.97	-2.58	1.07	5.06	-1.79	-1.07
0.59	-0.27	0.38	-0.61	-1.06	-1.43	-2.31	7.74	-3.65	-1.79	6.05	-3.64
0.91	0.11	3.44	-0.58	0.48	-2.50	4.84	-9.88	-6.03	-1.07	-3.64	13.91

9.3. Izjednačene vrijednosti mjerenja i nepoznanica

Br.	Mjereni pravac Br. L _i			Popravak Izjednačeni pravac v _i L _i			Izjednačeni orijentirani smjerni kut Vi			Izjednačeni smjerni kut iz izjednačenih koordinata īf _i			
	0	'	"	"	0	'	"	0	'	"	o	'	
L ₁	0	00	00.00	-1.687	359	59	58.313	289	33	21.044	289	33	21.044
L ₂	9	02	30.00	-0.080	9	02	29.920	298	35	52.650	298	35	52.650
L ₃	38	33	13.67	1.766	38	33	15.436	328	06	38.166	328	06	38.166
L ₄	0	00	00.00	0.492	00	00	00.492	273	01	45.611	273	01	45.610
L_5	74	16	05.83	0.932	74	16	06.762	347	17	51.881	347	17	51.883
L_6	310	25	08.00	-0.999	310	25	07.001	223	26	52.120	223	26	52.120
L ₇	343	42	07.50	-0.425	343	42	07.075	256	43	52.195	256	43	52.195
L ₈	0	00	0.00	-1.261	359	59	58.739	148	06	38.166	148	06	38.166
L ₉	19	11	14.50	-2.047	19	11	12.453	167	17	51.881	167	17	51.883
L ₁₀	37	14	42.67	7.019	37	14	49.689	185	21	29.117	185	21	29.118
L ₁₁	41	53	0.17	-2.855	41	52	57.315	189	59	36.742	189	59	36.744
L ₁₂	73	36	25.00	-0.856	73	36	24.144	221	43	03.572	221	43	03.572
L ₁₃	0	00	0.00	0.831	0	00	00.831	301	08	37.756	301	08	37.754
L ₁₄	45	36	54.83	-0.670	45	36	54.160	346	45	31.084	346	45	31.084
L ₁₅	64	12	52.50	-0.307	64	12	52.193	5	21	29.117	5	21	29.118
L ₁₆	102	18	15.17	0.026	102	18	15.196	43	26	52.181	43	26	52.120
L ₁₇	168	24	44.00	0.119	168	24	44.119	109	33	21.044	109	33	21.044
L ₁₈	0	00	0.00	0.603	0	00	00.603	41	43	3.572	41	43	03.572
L ₁₉	51	18	42.33	0.312	51	18	42.642	93	01	45.611	93	01	45.610
L ₂₀	61	45	53.00	0.469	61	45	53.469	103	28	56.439	103	28	56.437
L ₂₁	79	25	36.17	-1.384	79	25	34.786	121	08	37.756	121	08	37.754
L ₂₂	0	00	0.00	-1.115	359	59	58.885	283	28	56.439	283	28	56.437
L ₂₃	86	30	39.33	-0.142	86	30	39.188	9	59	36.742	9	59	36.744
L ₂₄	153	14	54.67	-0.029	153	14	54.641	76	43	52.195	76	43	52.195
L ₂₅	195	06	54.67	0.426	195	06	55.096	118	35	52.650	118	35	52.650
L ₂₆	243	16	32.67	0.860	243	16	33.530	166	45	31.084	166	45	31.084

Tablica 9.3.1. Izjednačene vrijednosti pravaca i definitivna kontrola izjednačenja

	Tablica 9.3.2.	Izjednačene	vrijednosti	duljina
--	----------------	-------------	-------------	---------

Br.	Mjerena duljina D _i	Popravak v _i	lzjednačena duljina D _i	lzjednačena duljina iz definitivnih koordinata Ī _i	
	m	m	m	m	
D ₁	809.9007	0.001	809.90161	809.90161	
D ₂	913.8039	-0.004	913.79976	913.79976	
D ₃	1297.2273	0.007	1297.23479	1297.23479	
D ₄	645.4802	-0.003	645.47714	645.47714	
D ₅	619.4832	0.006	619.48893	619.48894	
D ₆	311.3211	0.001	311.32218	311.32218	
D ₇	260.1753	-0.002	260.17311	260.17311	
D ₈	833.9885	0.003	833.99183	833.99183	
D ₉	674.2777	-0.005	674.27304	674.27305	
D ₁₀	763.9231	-0.002	763.92082	763.92082	
D ₁₁	502.9735	0.000	502.97358	502.97358	
D ₁₂	170.8467	0.001	170.84740	170.84740	
D ₁₃	402.4411	-0.003	402.43813	402.43813	

Tablica 9.3.3. Izjednačene vrijednosti nepoznanica

Točka	x _o y _o	dx dy	х ӯ		
	m	m	m		
D1	7035.2020	-0.0089	7035.1931		
PI	4383.2880	0.0159	4383.3039		
50	6868.9060	-0.0181	6868.8879		
P2	4422.4210	0.0161	4422.4371		
D4	7094.9290	-0.0208	7094.9082		
P4	4636.5100	0.0214	4636.5314		
DE	6597.8210	-0.0278	6597.7932		
P0	5185.6150	0.0051	5185.6201		
D11	7699.1900	0.0457	7699.2357		
PII	4500.3600	-0.0447	4500.3153		
17271	7128.9900	0.0299	7129.0199		
11261	3991.9700	-0.0138	3991.9562		

Mjerenje	Kofaktori mjerenja q _{ii}	Standardna odstupanja mjerenja s _i	Kofaktori izjednačenih mjerenja q _{ii}	Standardno odstupanje izjednačenog mjerenja s̄ _i
		'', m		", m
L ₁	0.75	2.003	0.0312	0.409
L ₂	0.75	2.003	0.0114	0.247
L ₃	0.75	2.003	0.0528	0.532
L ₄	1.00	2.314	0.0547	0.541
L ₅	1.00	2.314	0.1433	0.876
L ₆	1.00	2.314	0.1318	0.840
L ₇	1.00	2.314	0.1067	0.756
L ₈	0.56	1.730	0.0949	0.713
L ₉	0.56	1.730	0.0965	0.719
L ₁₀	0.56	1.730	0.01645	0.297
L ₁₁	0.56	1.730	0.0272	0.381
L ₁₂	0.56	1.730	0.1197	0.801
L ₁₃	0.16	0.914	0.0754	0.636
L ₁₄	0.16	0.914	0.0778	0.645
L ₁₅	0.16	0.914	0.0486	0.510
L ₁₆	0.16	0.914	0.0897	0.693
L ₁₇	0.16	0.914	0.0875	0.685
L ₁₈	0.21	1.069	0.0795	0.653
L ₁₉	0.21	1.069	0.0350	0.433
L ₂₀	0.21	1.069	0.0387	0.455
L ₂₁	0.21	1.069	0.0591	0.563
L ₂₂	0.36	1.380	0.1365	0.855
L ₂₃	0.36	1.380	0.0847	0.673
L ₂₄	0.36	1.380	0.1664	0.944
L ₂₅	0.36	1.380	0.0778	0.645
L ₂₆	0.36	1.380	0.1034	0.743
D ₁	19.1*10 ⁶	0.0101	7.1*10 ⁶	0.0062
D ₂	21.5*10 ⁶	0.0107	7.1*10 ⁶	0.0062
D ₃	30.6*10 ⁶	0.0128	7.1*10 ⁶	0.0062
D ₄	15.2*10 ⁶	0.0090	2.7*10 ⁶	0.0038
D ₅	14.6*10 ⁶	0.0088	2.6*10 ⁶	0.0038
D ₆	7.3*10 ⁶	0.0063	1.5*10 ⁶	0.0028
D ₇	6.1*10 ⁶	0.0057	1.2*10 ⁶	0.0025
D ₈	19.7*10 ⁶	0.0103	3.3*10 ⁶	0.0042
D ₉	15.9*10 ⁶	0.0092	2.9*10 ⁶	0.0039
D ₁₀	18.0*10 ⁶	0.0098	3.3*10 ⁶	0.0042
D ₁₁	11.9*10 ⁶	0.0080	2.4*10 ⁶	0.0036
D ₁₂	4.0*10 ⁶	0.0046	0.6*10 ⁶	0.0018
D ₁₃	9.5*10 ⁶	0.0071	1.9*10 ⁶	0.0032

Tablica 9.4.1. Ocjena točnosti mjerenja i izjednačenih mjerenja