SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Intuitivni sustav teleoperacije robotskoga manipulatora korištenjem RGB-Dubinske kamere

Filip Marić Ivan Jurin

Zagreb, travanj 2016.

Ovaj rad izrađen je na Fakultetu elektrotehnike i računarstva Sveučilišta u Zagrebu pod vodstvom prof. dr. sc. Ivana Petrovića i prof. dr. sc. Zorana Kalafatića i predan je na natječaj za dodjelu Rektorove nagrade u akademskoj godini 2015./2016.

Sadržaj

1.	Uvod	1
2.	Opći i specifični ciljevi rada	3
	2.1. Interpretacija pokreta	4
	2.2. Struktura sustava upravljanja	5
3.	Sklopovska podrška	7
	3.1. Microsoft Kinect 3d kamera	7
	3.2. Kinova Jaco robotska ruka	9
	3.2.1. Tehničke specifikacije	9
	3.2.2. Računalno sučelje	12
4.	Programska podrška	13
	4.1. ROS	13
	4.1.1. Osnovni koncepti	14
	4.1.2. Ostale korištene funkcionalnosti	14
	4.1.3. ros control	15
	4.2. Matlab	16
	4.3. OpenCV	16
	4.4. OpenKinect/libfreenect	17
	4.5. TensorFlow	17
	4.6. KDL	17
	4.7. Gazebo	18
	4.7.1. ROS integracija Gazebo paketa	18
5.	Kinematika manipulatora	19
	5.1. Direktna i inverzna kinematika Jaco robotske ruke	21
	5.1.1. Direktna kinematika	21
	5.1.2. Inverzna kinematika	24

5.2. Iterativno rješavanje kinematičkog problema			24
		5.2.1. Jakobijan manipulatora	24
		5.2.2. Upravljačka petlja	27
		5.2.3. Provjera sustava	28
6.	Dete	kcijski algoritam	31
	6.1.	Lokalizacija dlana u slici	31
		6.1.1. Slične metode	32
		6.1.2. Razvijena metoda	33
	6.2.	Određivanje poze dlana	38
		6.2.1. Slične metode	38
		6.2.2. Razvijena brza metoda određivanja zatvorenosti dlana	38
		6.2.3. Razvijena metoda primjenom dubokih konvolucijskih neuron-	
		skih mreža	42
7.	Upra	avljački algoritam	48
	7.1.	Arhitektura upravljačke petlje	49
		7.1.1. Inicijalizacija sustava	50
		7.1.2. Glavni čvor	51
		7.1.3. Kinematika	53
	7.2.	Simuliranje sustava	54
8.	Rezu	ıltati	58
	8.1.	Praćenje putanje u simulaciji	58
	8.2.	Praćenje putanje Jaco robotske ruke	60
	8.3.	Ispitivanje	64
9.	Zakl	ljučak	67
10.	Zahy	vala	68
Lite	eratu	ira	69
Рор	Popis slika		
Pop	Popis tablica		

1. Uvod

Klasična upravljačka sučelja za robotske manipulatore kao što su tipkovnice ili daljinski upravljači u uporabi su od samih početaka razvoja robotike. Kao pozitivna zajednička karakteristika ovih sučelja mogla bi se navesti njihova jednostavnost izvedbe: stisak odgovarajuće kombinacije tipki ili guranje kontrolne palice uzrokuje neku radnju manipulatora. Dok su se ovakva sučelja pokazala efektivnim i cijenovno povoljnim rješenjem za ustaljene uloge robotskih manipulatora, njihov učinak u novijim primjenama ostavlja prostor za drugačije pristupe.

Zahvaljujući masovnoj proizvodnji tehnologija koje su početkom razvoja robotike bile u povojima, danas je prostor za razvoj inovativnih pristupa upravljačkim sučeljima veći nego ikad. Robotski manipulatori vrlo su često anatomski slični ljudskoj ruci, što nas je dovelo do zaključka kako bi upravljanje manipulatora ljudskom rukom rezultiralo visokom razinom intuitivnosti, čiji manjak smatramo glavnim nedostatkom klasičnih sučelja.

Zamišljeno upravljačko sučelje razlikuje se od klasičnih po još jednoj osnovnoj karakteristici: ne zahtijeva kontakt između opreme i korisnika. Ovakav sustav ostvaren je snimanjem pokreta ruke korisnika pomoću RGB-Dubinske kamere, koja uz sve funkcije standardne kamere vraća informaciju o udaljenosti objekata u kadru. Dobivene informacije obrađuju se razvijenim algoritmom detekcije dlana ruke te se šalju preko mreže na upravljačko računalo robotskog manipulatora. Upravljačko računalo pomoću razvijenog kinematičkog algoritma trenutnom stanju ruke korisnika pridružuje stanje izvršnog člana manipulatora.

Ovakvim upravljanjem dobivene su prirodnije kretanje robotskih manipulatora, što postupnim ulaskom robota u svakodnevni život postaje tražena karakteristika. Moguće primjene nalazimo u raznim područjima koja zahtijevaju intuitivnije sučelje između robota i čovjeka, kao i u područjima gdje konvencionalni načini upravljanja nisu dovoljno učinkoviti. Jedna moguća primjena ovakvog rješenja u industriji zabave je pomicanje kamere na kraju više osnog manipulatora, gdje ovakvo upravljanje omogućuje snimatelju intuitivniju kontrolu kadra. Svemirske agencije i robotički laboratoriji di-

ljem svijeta već su duže vrijeme fokusirani na ovakav pristup problemu upravljanja robota u orbitalnim postajama [23] [9], gdje ovakva sučelja imaju dodatnu prednost zbog bestežinskog stanja korisnika. Ljudima s poteškoćama u kretanju robotska ruka upravljana ovakvom metodom može olakšati dohvaćanje objekata u okolini, pritom dajući obavljanju zadataka ljudsku dimenziju koja je pri uporabi ovakvih pomagala bitna.

U poglavlju "Opći i specifični ciljevi rada" (2) definirani su zadaci, zahtjevi i okvirna struktura upravljačkog sučelja. Poglavlja "Sklopovska podrška" (3) i "Programska podrška" (4) opisuju sklopovlje i programske alate s više ili manje detalja, ovisno o važnosti i frekvenciji pojavljivanja pojedine komponente u sustavu. Posebna pažnja pridana je opisu ROS operacijskog sustava i pratećih paketa, koji čine centralnu komponentu sustava.

Teoretska pozadina problema kretanja robotskog manipulatora i prijedlog rješenja obrađen je u poglavlju "Kinematika manipulatora" (5). Predloženo rješenje u ovom poglavlju također je programski provjereno na razini matematičke ispravnosti u programskom paketu Matlab. Problem detekcije stanja ljudske ruke obrađen je u poglavlju Detekcijski algoritam (6), gdje su dvije izložene metode uspoređene na bazi mogućnosti i performansi.

Nakon što su komponente koje sačinjavaju sustav pojedinačno objašnjene, njihova povezanost i detalji programske izvedbe izlaženi su u poglavlju "Upravljački algoritam" (7). U istom poglavlju izloženi su i rezultati ispitivanja sustava na simulaciji robotske ruke, razvijenoj radi boljeg uvida u moguće nedostatke programske izvedbe sustava. Konačno, rezultati dobiveni korištenjem upravljačkog sučelja na stvarnom manipulatoru, kao i ocjena intuitivnosti samog sustava izlažu se u poglavlju "Rezultati".

2. Opći i specifični ciljevi rada

Opći cilj našeg rada je razvoj upravljačkog sučelja koje kao ulaznu informaciju koristi se isključivo gestikulacije i pomake ruke korisnika. Zamišljeno sučelje mora biti jednostavno za svladavanje novom korisniku, intuitivno, te pružiti odgovarajuću razinu preciznosti i pri tome zadržati relativno nisku cijenu. Iz ovih smjernica proizlaze specifični ciljevi rada:

- cijeli sustav mora biti izveden koristeći besplatne, open-source¹ tehnologije.
 Ovime je osigurana ažurnost sustava kroz vrijeme, kao i jednostavniji popravci i modifikacije.
- radi nedostatka open-source rješenja za detekciju ruke korištenom RGB-Dubinskom kamerom, potrebno je razviti detekcijski algoritam koji uzima u obzir ograničenja korištene sklopovske podrške i potrebe sustava.
- udaljeno upravljanje zahtjeva korištenje robotskog operacijskog sustava ROS, u kojem je izveden cjelokupni upravljački algoritam.
- sustav mora biti primjenjiv na često korištenim robotskim manipulatorima. Ovo ukazuje na potrebu za programskim rješavanjem problema kinematike robotskog manipulatora uz dostupnu opisnu datoteku. Kompatibilnost sa najčešćim izvedbama ROS-API² sučelja mora biti osigurana korištenjem stadnardiziranih protokola.
- sustav mora imati zadovoljavajuće dinamičko ponašanje, što zahtijeva testiranje kinematike i upravljačke petlje na simulaciji razvijenoj za potrebe rada.

Za ostvarivanje ovih ciljeva potrebno je savladati metodologiju korištenja nekolicine programskih paketa i biblioteka, kao i riješiti problem međusobne kompatibilnosti brojnih komponenti sustava. Komponente je potom potrebno uklopiti u strukturu

¹**open-source** - čiji je izvorni kod i/ili nacrti (dizajn) dostupan javnosti na uvid, korištenje, izmjene i daljnje raspačavanje

²**API** (*engl. application programming interface*) - set programskih "blokova" razvijen sa svrhom olakšavanja komunikacije i upravljanja programskim ili sklopovskim sustavom

upravljačke petlje više razine, pri tome vodeći računa o radnim frekvencijama korištenih sklopova.

2.1. Interpretacija pokreta

Samom prenošenju kretnji ljudske ruke na robota pristupa se na dva načina: prvi ostvaruje praćenje ljudske ruke u stvarnom vremenu, dok se drugi bazira na načelu sličnom upravljanju kontrolnom palicom (*engl. joystick*).

Praćenje ljudske ruke ostvaruje se "poistovjećivanjem" dlana korisnika s alatom na vrhu manipulatora. Pri početku upravljanja ljudska se ruka nalazi na sredini kadra i odgovarajućoj udaljenosti, ova početna pozicija poistovjećuje se s trenutnom pozicijom alata manipulatora. Pomicanjem dlana korisnik pomiče željenu poziciju alata manipulatora. Upravljačka petlja "primjećuje" ovu razliku te regulacijom brzine zglobova ili izvršnog člana nastoji smanjiti pogrešku između trenutne i željene pozicije manipulatora. Iste tvrdnje vrijede za postavljanje orijentacije izvršnog člana.

Izvedba *joystick* načina rada oko početne pozicije korisnikove ruke formira sferu promjera ovisnog o veličini dlana. Zadržavanjem dlana korisnika unutar sfere, upravljački algoritam zadržava izvršni član u trenutnoj poziciji. Pomicanjem dlana korisnika izvan sfere, upravljački algoritam pomiče vrh manipulatora u smjeru vektora razlike pozicija dlana od središta kugle. Dva navedena pristupa svojom funkcionalnošću podređeni su ograničenjima detekcije i izvođenju u stvarnom vremenu. Velika prednost razvijene detekcije leži u činjenici da se prati samo ljudska šaka te konkretno prenošenje kretnji na zglobove obavlja kinematički algoritam. Prenosi se samo konačni "cilj" kretanja, dok se način postizanja prilagođava građi manipulatora.

Zajednička funkcija obaju navedenih pristupa vezana je uz otvaranje i zatvaranje izvršnog člana. Otvaranje šake korisnika upravljački algoritam interpretira kao naredbu otvaranja izvršnog člana, dok se zatvorena šaka interpretira kao naredba zatvaranja. Ova funkcija naravno ovisi o tipu alata na kraju manipulatora, no mapiranje otvaranja i zatvaranja šake na neku drugu funkciju ne predstavlja problem radi separabilnosti dijela upravljačke petlje vezane uz izvršni član. Radi sažetosti izlaganja ovom radu većinom se obrađuje prvi i složeniji način upravljanja jer sustavi razvijeni za njega mogu ostvariti *joystick* način rada uz minimalne modifikacije.

2.2. Struktura sustava upravljanja

Sustav upravljanja na najvišoj se razini sastoji od 4 komponente:

- **detektor** Na RGB-Dubinskoj slici pronalazi dlan korisnika, njegove prostorne koordinate, orijentaciju i otvorenost.
- **regulator** Interpretira razliku trenutnih stanja dlana i izvršnog člana manipulatora. Rezultat se pretvara u potreban zakret (brzinu zakreta) zglobova manipulatora, nakon čega se šalje u API sučelje.
- API sučelje Prima upravljačku naredbu i nakon obrade je prosljeđuje na nižu razinu gdje se pretvara u API naredbu. U istom ciklusu API sučelje učitava trenutna stanja zglobova manipulatora i čini ih dostupnim regulatoru.
- manipulator Prima i izvodi API naredbu kretanjem zglobova. Ugrađeno sklopovlje bilježi senzorska mjerenja sa zglobova te ih priprema za čitanje od strane API sučelja.

Kako bi se kvalitetno ostvarili koncepti upravljanja navedeni u odlomku 2.1, vrlo je bitna povratna veza prikazana na slici 2.1. Povratna veza omogućuje uvid u trenutno stanje sustava čime se postiže ispravljanje pogrešaka, praćenje referentne veličine i otpornost na smetnje. Pomoću informacija o poziciji pojedinačnih zglobova također se osvježava matrica Jakobijana manipulatora, koja je ključni element općeg kinematičkog rješenja praćenja u poglavlju 5.1.

Slika 2.1: Blok dijagram izvedbe sustava

Detektor

Zahtjevi postavljeni na detektor relativno su niski. Radna frekvencija trebala bi biti dovoljno visoka da pri prosječnom gibanju referentne veličine bivaju zadane prije no što ih manipulator može sustići kako bi izbjegli isprekidano kretanje. Minimalni zahtjev na sam detekcijski algoritam jest mogućnost pronalaženja koordinata ljudskog dlana u barem dvije dimenzije, ovime se omogućava kretanje manipulatora po ravnini. U našem radu izvedeno je trodimenzionalno translacijsko kretanje s jednim stupnjem slobode rotacije, dok je upravljačka petlja potpuno osposobljena za detekciju punih 6 stupnjeva slobode gibanja.

Regulator

Pod pojmom regulator ovdje se podrazumijeva cijela programska struktura koja prima, obrađuje i šalje podatke između više objekata u stvarnom vremenu. Stvarna struktura regulatora detaljnije se razmatra u poglavlju 7, nakon upoznavanja s korištenom programskom podrškom i kinematičkim rješenjem.

Ovdje je potrebno napomenuti da je za kvalitetan rad regulatora bitna sinkronizacija rada svih njegovih komponenti kako bi se ostvario stabilan protok podataka i stalna radna frekvencija sustava. Ovo se ostvaruje korištenjem mrežne arhitekture operacijskog sustava ROS, koji omogućuje postavljanje radne frekvencije komponenti i daje detaljan uvid u protok podataka. Također, mrežna arhitektura ROS-a omogućuje pokretanje komponenti pojedinačno na različitim fizičkim računalima, što ide u prilog modularnosti sustava.

API sučelje

Općenitost sustava zahtijeva razdvajanje općih funkcija za regulaciju i obradu podataka od funkcija povezanih uz specifični korišteni manipulator. Konkretnije, ovu komponentu potrebno je ostvariti tako da se na nju može spojiti API bilo kojeg manipulatora koji zadovoljava fizičke zahtjeve.

Paket ros_control ostvaruje zadano sučelje koristeći apstraktne klase na koje "spajamo" API manipulatora. Dovoljno je funkcije čitanja stanja zglobova i zadavanja brzine/pozicije "umotati" u dostupne klase te ostatak sustava izvesti koristeći njih.

Manipulator

Manipulator je robotski uređaj koji izvršava željenu radnju te je na njega postavljeno nekoliko osnovnih zahtijeva kako bi bio kompatibilan sa sustavom. Kao što je ranije spomenuto, sam manipulator mora imati minimalno dva računalom upravljiva stupnja slobode (time se ostvaruje planarno kretanje). Minimalan uvjet za upravljanje jest postojanje API naredbi vezanih uz postavljanje brzine zglobova. Također, manipulator mora biti opermljen senzorima pozicije i/ili brzine koje je moguće čitati na računalu koristeći API.

3. Sklopovska podrška

Sustav je dizajniran da bude univerzalan s obzirom na manipulator i detekcijski uređaj, ali pri svim testiranjima korištena je Kinova Jaco robotska ruka i Microsoft Kinect RGB-Dubinska kamera.

3.1. Microsoft Kinect 3d kamera

Slika 3.1: RGB-Dubinska kamera Kinect for Xbox 360

Moderni senzori su u mogućnosti prikazati sliku uz submilimetarsku preciznost. Takvu preciznost nam ne nudi Kinect, ali nudi sasvim prihvatljivu preciznost od nekoliko milimetara (ovisno o udaljenosti objekta).

Kinect je naziv za liniju Microsoftovih senzora pokreta razvijenih primarno za potrebe igraćih konzola, ali u širokoj uporabi u području računalnog vida. Sastoji se od dubinske kamere, klasične kamere te niza mikrofona pomoću kojih je u mogućnosti izvršavati kompleksne zadatke prepoznavanja i praćenja kao što je praćenje ljudskih pokreta.

U ovom radu korišten je *Kinect for Xbox 360* [10] (Slika 3.1) te se ne razmatraju parametri drugih Kinect senzora.

RGB-Dubinska kamera sastoji se od emitera infracrvene svjetlosti koji projicira pseudoslučajne uzorke točaka u Kinectov vidokrug. Infracrvena kamera koja se nalazi na znanoj udaljenosti snimi položaj točaka, po kodiranom uzorku zna pod kojim je kutom uzorak generiran te jednostavnom triangulacijom izračuna dubinu u danoj točki prostora. Kako postoji određena udaljenost između senzora i emitera, na nekim mjestima Kinect neće biti sposoban odrediti dubinu zbog okluzije (Slika 3.2).

Slika 3.2: a) Okluzija u dubinskoj slici. b) Gubitak malih objekata.

Okluzija se pojavljuje kao posljedica razmaka između emitera infracrvene svjetlosti i kamere. Kako kamera promatra prostor s neke udaljenosti od emitera, vidi neke dijelove prostora koje emiter nije mogao obasjati jer su bili pokriveni drugim objektima. Tako na slici 3.2 a) bijela boja predstavlja sjenu koju dubinska slika ruke ostavlja za sobom. Iz položaja sjene i ruke jasno se vidi kako emiter emitira infracrvenu svjetlost s desne strane kamere što i je slučaj ako se pogleda arhitekturu senzora gdje se emiter nalazi s desne strane 3.1.

Okluzije predstavljaju znatni problem u detektiranjima. U detekciji dlana, dlan može biti u takvom položaju da jedan dio dlana zasjeni drugi te je tada dobivena maksimalna moguća dubina na tom području. Takvi slučajevi mogu prevariti detektor te zato valja imati na umu učinak okluzije prilikom konstrukcije detektora.

Jedan kvalitetan pristup detekciji dlana koristi sintetizirane slike dlana na kojima simulira i okluziju kako bi detektor bio što bolje naučen na prave slike [22]. U istom radu Xu i Cheng simulirali su i neuspješne detekcije malih površina. Jedan takav primjer se vidi na slici 3.2 b), gdje je kažiprst okrenut u smjeru kamere te ne uspijeva biti detektiran. Razlog takvih neuspješnih detekcija nalazimo u načinu na koji Kinect određuje kut pod kojim je površina obasjana. Kako je već spomenuto, Kinect generira pseudoslučajne uzorke ovisno o kutu pod kojim su oni projicirani te tako kamera uspoređivanjem uzoraka može znati pod kojim kutom je predmet obasjan. Ako je predmet dovoljno male površine, uzorak neće biti potpun. Kinect pri tome pristupa na isti način kao i kod okluzije, dubinu na tom području postavlja na maksimalnu moguću dubinu.

3.2. Kinova Jaco robotska ruka

Kinova Jaco (3.3) robotska ruka je namijenjena osobama s poteškoćama u kretanju. Jaco 2010. godine na tržište je stavlja kanadska tvrka Kinova robotics s ciljem olakšavanja svakodnevnog života korisnika. Jaco ima 6 stupnjeva slobode, čime se ostvaruje puna sloboda pozicioniranja alata u prostoru. Alat ili izvršni član sastoji se od grabilice s 3 prsta, što omogućuje stabilne hvatove velike količine svakodnevnih objekata. Ruka je dizajnirana kako bi bila kompatibilna s raznim dostupnim električnim invalidskim kolicima, ali je zbog svoje kvalitetne izrade i tehničkih specifikacija našla široku primjenu u znanosti.

Slika 3.3: Kinova Jaco robotska ruka

3.2.1. Tehničke specifikacije

Glavne prednosti Jaco robotske ruke relativno su niska potrošnja električne energije i malena masa komponenata. Aktuatori na zglobovima opremljeni su raznim senzorima čijim čitanjem korisnik može dobiti veliku količinu povratnih informacija o stanju manipulatora.

Opće specifikacije

Potrebni ulazni napon kreće se od 18V do 29V, a to su vrijednosti lako ostvarive baterijom ugradivom u električna invalidska kolica. Masa od 5.6 kg osigurava jednostavnu montažu i sigurnost pri upravljanju, što je također vrlo bitno za primarnu svrhu ove robotske ruke. Detaljan prikaz općih specifikacija manipulaotra nalazi se u tablici 3.1.

Masa	$5.6\pm5\%$ [kg]	
Ulazni napon	18 – 29 [VDC]	
Ulazna struja	2 - 10 [A]	
Srednja snaga	40 [W]	
Frekvencija upravljanja	100 [Hz]	
Max. teret na alatu pri srednjoj ispruženosti	1.5 [kg]	
Max. teret na alatu pri maksimalnoj ispruženosti	1 [kg]	
Dohvat	90 [cm]	
Linearna brzina alata	5 - 15 [cm/s]	
Sila stiska prsta	7 [N]	

Tablica 3.1: Prikaz tehničkih specifikacija Jaco robotske ruke

Aktuatori

Manipulator se sastoji od 2 grupe od 3 identična aktuatora, modela K-75+ i K-58. Veći aktuatori (K-75+) čine 3 donja zgloba koji podnose najveće terete, dok manji aktuatori (K-58) zauzimaju mjesto zglobova čija je primarna funkcija postavljanje orijentacije alata u prostoru. Postoje još 3 aktuatora koji preko mehanizma arhimedova vijka pokreću prste. Detaljan pregled specifikacija aktuatora nalazi se u tablicama 3.2, 3.3, 3.4.

Slika 3.4: a) aktuator K-75+ b) aktuator K-58

Senzori

Jaco robotska ruka opremljena je velikom količinom senzora. Svaki zglob posjeduje senzore pozicije, temperature, struje i napona.

Masa	$0.64 \pm 2\%$ [kg]
Promjer	74.5(+0.00/-0.03) [mm]
Visina	67 [mm]
Maksimalna brzina	8 [RPM]
Apsolutna pogreška pozicije	$\pm 0.5^{\circ}$
Ulazni napon	18 – 29 [VDC]
Nominalni moment	15 [Nm]
Maksimalni moment	26 [Nm]

Tablica 3.2: Prikaz tehničkih specifikacija aktuatora K-75+.

Tablica 3.3: Prikaz tehničkih specifikacija manjih aktuatora

Masa	$0.39 \pm 2\%$ [kg]
Promjer	58(+0.00/-0.03) [mm]
Visina	69 [mm]
Maksimalna brzina	10 [RPM]
Apsolutna pogreška pozicije	$\pm 0.5^{\circ}$
Ulazni napon	18 – 29 [VDC]
Nominalni moment	4 [Nm]
Maksimalni moment	7 [Nm]

Tablica 3.4: Prikaz tehničkih specifikacija aktuatora prstiju

Maksimalna brzina	600 [RPM]
Ulazni napon	18 - 29 [VDC]
Nominalni moment	15 [mNm]
Maksimalni moment	30 [mNm]

Senzori pozicije služe za bilježenje zakreta svakog pojedinačnog zgloba manipulatora, a diferenciranjem zakreta dobiva se informacija o brzini okretanja. Informacijom o temperaturi aktuatora manipulator se štiti od moguće štete uzrokovane prekomjernim zagrijavanjem. Pomoću senzora struje moguće je dobiti povratnu informaciju o momentu razvijenom na pojedinom aktuatoru, ovaj zaključak proizlazi iz dobro poznatog identiteta:

$$m_m \approx k \, i_a;$$
 (3.1)

Ovdje i_a predstavlja trenutnu struju armature akturatora, dok je k konstanta definirana

specifikacijama motora.

3.2.2. Računalno sučelje

Jaco robotska ruka s računalom se povezuje preko USB 2.0 (*engl. Universal Serial Bus*) sučelja. SDK¹ Jaco robotske ruke kompatibilan je s novijim inačicama Linux Ubuntu i Windows operativnih sustava, a uz API sadrži grafičko upravljačko sučelje i bazu primjera korištenja API biblioteka.

¹SDK (engl. Software Development Kit) - paket je programskih biblioteka, alata i uputa za razvoj vlastitih aplikacija za određeni programski ili sklopovski sustav.

4. Programska podrška

Ovo poglavlje sadrži opise svih programskih paketa, biblioteka i elemenata korištenih u ovom radu. Kratko se opisuju karakteristke i uloge svake pojedine stavke programskog dijela arhitekture sustava. Potpoglavlja koja opisuju ROS i Gazebo sadrže nešto detaljnije opise jer smatramo da je razumijevanje mehanizama njihova rada ključno za razumijevanje načela rada sustava.

4.1. **ROS**

Slika 4.1: ROS logotip

ROS (engl. *Robot Operating System*) je operacijski sustav koji omogućuje jednostavno povezivanja alata i biblioteka potrebnih za razne izvedbe u robotici. ROS je razvijen 2007. godine pod imenom *switchyard* unutar laboratorija za umjetnu inteligenciju sveučilišta Stanford, kao razvojni alat za STAIR¹ robota. 2008. godine razvoj ROS-a preuzima institut Willow Garage iz Kalifornije. Od 2013. na dalje ROS postaje potpuno open-source i razvoj preuzima Open Source Robotics Foundation.

Glavna gradivna jedinica svake izvedbe u ROS-u je paket. Paketi u sebi sadrže C++/Python aplikacije koje nazivamo čvorovima (engl. *nodes*). Čvorove koristimo za komunikaciju sa sklopovljem (aktuatorima, senzorima...), upravljanje simulacijama i prikazivanje podataka. Izvedbe se u stvarnosti najčešće sastoje od više paketa, stoga se prava prednost ROS-a krije u ostvarivanju brze i učinkovite peer-to-peer komunikacije među čvorovima.

Komunikacija u ROS-u ostvaruje se mrežno (TCP/IP i UDP/IP protokolom) pomoću tema (engl. *topics*) i poruka (engl. *messages*). Uz gore navedeno, ROS nudi

¹STAIR - STanford Artificial Intelligence Robot

razne naredbe unutar terminala koje olakšavaju prikaz podataka te dijagnostiku pri uklanjanju pogrešaka u kodu. Treba napomenuti da postoje i druge opcije za izvedbu aplikacija u robotici, kao što je OROCOS (engl. *Open Robot Control Software*). ROS je za ovaj projekt izabran zbog jednostavnosti ostvarivanja distribuirane izvedbe.

4.1.1. Osnovni koncepti

Osnovna komunikacija u ROS-u može se vizualizirati u obliku grafa povezanih čvorova i tema. Ovakva struktura daje praktičan način prikazivanja sustava na najvišoj razini, čime se olakšava programska izvedba logike upravljanja.

Slika 4.2: Čvor A i čvor B ostvaruju jednosmjernu komunikaciju koristeći topic

Čvorovi spremaju podatke u standardizirane strukture koje zovemo porukama te ih objavljuju na odgovarajuće mrežne lokacije koje nazivamo temama. Svaka tema prima samo jednu točno definiranu vrstu poruke i njen sadržaj dostupan je svim čvorovima na mreži. Izdavač (engl. *publisher*) je objekt unutar čvora koji šalje poruku na temu, dok pretplatnik (engl. *subscriber*) čini njegov komplement i čita poruku trenutno sadržanu na temi.

Ovaj način komunikacije omogućuje distribuciju raznih procesa na više računala što izvedbe čini manje ovisnima o sistemskim zahtjevima i izboru programskog jezika za pojedine čvorove.

4.1.2. Ostale korištene funkcionalnosti

Uz navedene osnovne funkcionalnosti, ROS sadrži neke složenije koncepte od kojih se ovdje izdvajaju servisi i parametarski server.

Servisi

U ovom radu koriste se servisi (engl. *services*). Pomoću servisa čvor A može direktno zahtijevati odgovor čvora B preko mreže. Čvor A objavljuje servis na mrežnu lokaciju sličnu temi, na tu lokaciju čvor B šalje zahtjev i adresu za spremanje odgovora. Čvor A učitava zahtjev s mrežne lokacije, obrađuje ga i odgovor sprema na adresu.

Zahtjev i odgovor najčešće su standardne ROS poruke, što znači da se pomoću servisa omogućuje korištenje funkcija čvora A u čvoru B. Ova funkcionalnost vrlo je korisna za distribuirane izvedbe procesno intenzivnih zadataka.

Parametarski server

Parametrima (engl. *parameters*) se nazivaju karakteristične veličine unutar ROS čvorova koje se koriste pri izračunima varijabli. Glavna razlika između parametra i varijable nalazi se u frekvenciji promjene, koja je za parametre znatno niža.

ROS nudi mogućnost učitavanja parametara s mrežnih lokacija čime se omogućuje jednostavno fino podešavanje ponašanja čvora pri testiranju. Ovakvim pristupom se izbjegava potreba ponovnim kompiliranje koda pri svakoj promjeni parametara.

4.1.3. ros control

ROS paket ros_control ostvaruje generičke PID regulatore za razna sklopovska sučelja unutar ROS arhitekture. Jednostavna i standardizirana integracija s ostatkom ROS ekosustava čini ovaj paket čestom komponentom sustava izvedenih u ROS-u.

Kako bi se postiglo poopćenje, PID upravljanja neovisno o konkretnom robotu (tj. o API-ju), API funkcije robota "umataju" se unutar apstraktnih hardware_interface klasa koje čine ROS-API sučelje. Umjesto da regulatori šalju i čitaju podatke koristeći API funkcije direktno, ove operacije obavljaju se pozivanjem generičkih funkcija unutar kojih su "umotane" API funkcije . Kako bi primijenio postojeći sustav na drugog robota (uz dostupnost istog seta naredbi koje koristi regulator), korisnik mora samo uklopiti odgovarajuće API funkcije unutar generičkih. Za dobar dio robota ovo sučelje već postoji radi open-source karaktera ROS ekosustava.

4.2. Matlab

Slika 4.3: Mathworks Matlab logo

Matlab je računalno okruženje namijenjeno rješavanju širokog spektra tehničkih, računalnih i znanstvenih problema.

U užem smislu Matlab je viši programski jezik četvrte generacije koji omogućava manipulaciju matricama, numeričko računanje, iscrtavanje funkcija i još velik broj korisnih aplikacija. Unutar Matlaba nalazi se veliki broj programskih paketa koji se koriste za specifične probleme. Nama je bitan paket za simbolički račun, kao i paketi za čitanje podataka spremljenih unutar ROS operacijskog sustava. Za svrhe testiranja nam je također bitna mogućnost pretvaranja Matlab koda u C, čime se znatno ubrzava izvođenje te omogućuje testiranje matematičkog modela.

U ovom se radu Matlab koristi pri razvoju rješenja kinematike manipulatora za preliminarno testiranje matematičke provedivosti zamišljene upravljačke petlje.

4.3. OpenCV

Slika 4.4: OpenCV logo

OpenCV je biblioteka otvorenog koda koja je revolucionarizirala područje računalnog vida. Mnogobrojnim ugrađenim funkcijama koje su dobro dokumentirane omogućava početnicima lagani početak bavljenja računalnim vidom. U ovom radu korištene su ugrađene funkcije dostupne u biblioteci za obradu slike od kojih valja izdvojiti brze izvedbe algoritma za pronalaženje kontura na slici, određivanje obujmica kontura te implementacije morfoloških operacija nad slikom.

4.4. OpenKinect/libfreenect

Slika 4.5: OpenKinect logo

OpenKinect je otvorena zajednica programera entuzijasta koji su razvili biblioteku *lib-freenect* kao biblioteku otvorenog koda koja daje na raspolaganje sučelje za upravljanje Kinect uređajima na različitim platformama. Funkcijama za dohvat podataka s priklju-čenog Kinect uređaja moguće je dohvatiti trenutnu dubinsku sliku u preglednom obliku koji je kompatibilan s bibliotekom OpenCV kako bi se ona mogla dalje procesirati.

4.5. TensorFlow

TensorFlow je biblioteka otvorenog koda namijenjena brzom izračunu operacija nad podacima u obliku višedimenzionalnih tenzora. Temelji se na grafovima toka podataka gdje je svaki čvor (engl. *node*) u usmjerenom grafu jedna operacija nad jednim ili više ulaznih tenzora te računa izlaz kao jedan ili više izlaznih tenzora. Većina operacija zna izračunati i parcijalnu derivaciju svakog izlaza po svakom od ulaza koje se koriste prilikom propagacije greške tokom učenja.

Kako je orijentirana na strojno učenje uporabom neuronskih mreža, nudi i širok spektar različitih specijaliziranih metoda, kao što su različiti optimizatori ili različiti modeli prijenosnih funkcija.

Biblioteka također omogućava lako postavljanje željene arhitekture mreže i učenje istih na grafičkim procesorima što višestruko ubrzava sam proces učenja.

4.6. KDL

KDL (engl. *Kinematics Dynamics Library*) je open-source C++ biblioteka razvijena za modeliranje i računanje kinematičkih lanaca. Pomoću ove biblioteke moguće je jednostavno programski rješavati direktnu i inverznu kinematiku te dinamiku manipulatora sa manje od 7 stupnjeva slobode. U ovom radu koristi se mogućnost konstrukcije Jacobijeve matrice manipulatora iz opisne datoteke. Spomenuta matrica pokazuje vrlo važnom prilikom rješavanja problema praćenja putanje u općem slučaju. KDL također vodi računa o izbjegavanju singulariteta u matricama, čime je osiguran kontinuiran rad upravljačkog algoritma.

4.7. Gazebo

Slika 4.6: Gazebo logo

Gazebo je open-source programski paket za simulaciju robotskih sustava, njihovih senzora i okoline. Kako bi se postiglo simuliranje dinamike robota korišten je DART², jedna od nekoliko biblioteka ovog tipa koje Gazebo podržava. Kvalitetno iscrtavanje 3d modela korištenog robota u Gazebu omogućeno je korištenjem OGRE³ 3d grafičkog modula.

Semantički opis robota, njegovih komponenti, prijenosa i zglobova Gazebo dobiva iz pripadajuće URDF⁴ datoteke. URDF je vrlo često korišten format za opis kinematičkih lanaca koji nudi kvalitetnu integraciju sa Gazebom i brojnim drugim robotičkim aplikacijama. Proces pripreme simulacije znatno ubrzava činjenica da gotovo svaki komercijalni robotski manipulator ima pripadajuću URDF datoteku.

4.7.1. ROS integracija Gazebo paketa

Glavni razlog za korištenje ovog simulacijskog paketa uska je integracija sa ROSom, čime se postiže jednostavan transfer sustava razvijenog na simulaciji na stvarni manipulator. Gazebo simulaciju moguće je potpuno upravljati kroz ROS kroz regulatore i sučelja ostvarene ros_control paketom, što nam omogućuje simuliranje korištenjem koda za stvarni manipulator. Ova kompatibilnost ostvaruje se kroz gazebo_ros, gazebo_msgs, gazebo_plugins ROS pakete. Vrsta sklopovskog sučelja simulacije definirana je unutar URDF datoteke, te se pri pokretanju Gazeba unutar ROS okruženja sučelje objavljuje kao stvarno. Zahvaljujući ovoj činjenici, sustav je moguće razvijati za simulaciju i stvarni sklop istovremeno, što ubrzava proces razvoja.

²DART (engl. Dynamic Animation and Robotics Toolkit) - www.dartsim.github.io

³OGRE (engl. Object-Oriented Graphics Rendering Engine) - www.ogre3d.org

⁴**URDF** (engl . Unified Robot Description Format)

5. Kinematika manipulatora

Modularna arhitektura našeg sustava dopušta integraciju manipulatora sa različitim razinama mogućnosti API-ja. Unatoč tome što većina komercijalnih manipulatora dolazi s već izvedenim naprednim kinematičkim funkcijama, odlučeno je da radi kompletnosti izvedbe mora biti predviđen i slučaj kada su dostupne samo naredbe pomicanja zglobova. Ovo poglavlje prikazuje teoretsku pozadinu programskog rješenja kinematike neredundantnog manipulatora izvedenog unutar našeg sustava na primjeru Jaco robotske ruke. Budući da Jaco robotska ruka ima 6 stupnjeva slobode, sa stajališta složenosti kinematike ovaj izbor predstavlja svojevrsni najgori slučaj. Kinematičko rješenje provjerava se u Matlab programskom paketu kako bi se ustanovila numerička stabilnost rješenja i mogući nedostaci.

Slika 5.1: Model Jaco robotske ruke sa označenim parametrima

U idealnom slučaju, rješavanje problema direktne kinematike manipulatora s do 6 stupnjeva slobode zahtijeva sintezu matrica homogene transformacije između koordinatnih sustava baze i alata. Iz članova dobivene matrice potom se analitički dobivaju izrazi za Kartezijsku poziciju i orijentaciju alata u ovisnosti o zakretima zglobova. Sinteza direktne kinematike započinje se D-H postupkom [18] postavljanja koordinatnih sustava vezanih uz zglobove. Određivanjem matrica homogenih transformacija između tih sustava dobiva se surjektivna¹ funkcija koja prostor zglobova preslikava u 6-dimenzionalni prostor pozicije.

Problem inverzne kinematike znatno je složeniji jer zahtijeva rješavanje sustava nelinearnih jednadžbi s više nepoznanica. Za složenije manipulatore ovaj problem

¹Uz pretpostavku restrikcije zakreta zglobova na vrijednosti $[0, 2\pi]$.

je netrivijalan, a analitička rješenja postoje tek u specijalnim slučajevima gdje su osi zglobova međusobno okomite. Još jedna otežavajuća okolnost nalazi se u činjenici da će dobivena rješenja često biti višestruka, a pronalaženje odgovarajućeg ovisi o konstrukciji i poziciji manipulatora. Kod redundantnih manipulatora ovaj problem poprima dodatnu složenost jer za svaku zadanu konfiguraciju postoji beskonačno mnogo rješenja.

Analitička rješenja problema ne postoje za većinu konfiguracija sa 6 stupnjeva slobode [7], a klasični pristupi aproksimiranju rješenja sustava nelinearnih jednadžbi [3][2] zahtijevaju složen račun neprikladan za izvođenje u stvarnom vremenu. Pronađeno je da je ovaj problem moguće zaobići koristeći iterativnu metodu baziranu na pronalaženju inverza matrice Jakobijana manipulatora [4], koja je puno prikladnija za programsku izvedbu.

Slika 5.2: Model Jaco robotske ruke sa označenim parametrima korištenim pri sintezi DH parametara

U prvom odlomku preskaču se pojedinosti D-H postupka i pomoću gotovih parametara izvode se matrice homogene transformacije. Zatim se opisuje problem inverzne kinematike te klasični pristup rješavanju. Drugi odlomak sadrži opis našeg pristupa rješavanju inverzne kinematike. Počinje se od osnovne ideje, a zatim su objašnjena poboljšanja potrebna kako bi sustav bio primjenjiv na robotskom manipulatoru. Radi sažetosti izlaganja ove naprednije metode se ne izvode, ali ukratko objašnjeni članovi u njihovim izrazima. Rezultati zamišljenog postupka potom se ispituju na matematičkom modelu korištenjem Matlab programskog okruženja.

5.1. Direktna i inverzna kinematika Jaco robotske ruke

5.1.1. Direktna kinematika

Problem direktne kinematike rješavan je tako da su prvo postavljeni koordinatni sustavi koji odgovaraju svakom pojedinačnom zglobu prema pravilima D-H postupka. Iz međusobnih udaljenosti i razlika u orijentaciji ovih zglobova proizlaze D-H parametri koji su korišteni za sintezu matrica homogenih transformacija. Množenjem dobivenih matrica dobiva se matrica koja izražava poziciju i orijentaciju alata izražene Kartezijevim koordinatama u ovisnosti o zakretu zglobova.

D-H Parametri

D-H parametri standardizirani su način prikaza kinematičkog lanca u robotici. Pri sintezi matrica transformacije ruke korišteni su D-H parametri iz službene dokumentacije za Jaco robotsku ruku prikazani u tablici 5.2. Za sintezu D-H parametara koriste se duljine članaka kao i parametri koji su iz njih izvedeni, prikazani su na slici 5.2.

D_1	0.2755 [m]
D_2	0.4100 [m]
D_3	0.2073 [m]
D_4	0.0743 [m]
D_5	0.0743 [m]
D_6	0.1687 [m]
e_2	0.0098 [m]
a	$\frac{11\cdot\pi}{72}$ [m]
d_{4b}	$D_3 + D_4 \frac{\sin(a)}{\sin(2a)} [\mathrm{m}]$
d_{5b}	$D_4 + D_5 \frac{\sin(a)}{\sin(2a)} [\mathrm{m}]$
d_{6b}	$D_6 + D_5 \frac{\sin(a)}{\sin(2a)} [m]$

Tablica 5.1: Konstrukcijski parametri Jaco robotske ruke

Ne ulazeći u pojedinosti DH metode, potrebno je napomenuti da d i a parametri predstavljaju međusobne odmake koordinatnih sustava zglobova, dok kut θ predstavlja rotaciju koordinatnih sustava oko vlastite osi rotacije. Navedenim parametrima dodaju se i razlike u orijentaciji rotacijskih osi zglobova α . Konačni parametri prikazani su u tablici 5.2.

k	α_k	a_k	d_k	θ_k
1	$\pi/2$	0	D_1	θ_1
2	π	D_2	0	θ_2
3	$\pi/2$	0	-e2	θ_3
4	$\frac{11\pi}{36}$	0	$-d_{4b}$	θ_4
5	$\frac{11\pi}{36}$	0	$-d_{5b}$	θ_5
6	π	0	$-d_{6b}$	θ_6

Tablica 5.2: DH parametri

$$\theta_1 = -q_{1_{Jaco}} \tag{5.1}$$

$$\theta_2 = q_{2_{Jaco}} - \frac{\pi}{2} \tag{5.2}$$

$$\theta_3 = q_{3_{Jaco}} + \frac{\pi}{2} \tag{5.3}$$

$$\theta_4 = q_{4_{Jaco}} \tag{5.4}$$

$$\theta_5 = q_{5_{Jaco}} - \pi \tag{5.5}$$

$$\theta_6 = q_{6_{Jaco}} + \frac{5\pi}{9} \tag{5.6}$$

Odnos kutova u matematičkom modelu i stvarnih kutova zglobova Jaco ruke dan je izrazima 5.1, 5.2, 5.3, 5.4, 5.5, 5.6. Varijabla $q_{i_{Jaco}}$ predstavlja trenutačnu rotaciju i-tog zgloba Jaco robotske ruke očitanu kroz API, dok θ_i predstavlja stvarni zakret i-tog zgloba.

Matrice homogene transformacije

_

Matrica homogene transformacije između dva koordinatna sustava postavljena prema D-H postupku određena je izrazom 5.7. Vektor $\mathbf{p} = [x \ y \ z]^T$ sadrži poziciju ishodišta k-tog koordinatnog sustava u koordinatnom sustavu k-1. Matrica **R** je matrica rotacije koja definira orijentaciju koordinatnog sustava k u koordinatnom sustavu k-1.

$$\mathbf{T_{k-1}^{k}} = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta_{k} & -\cos \alpha_{k} \sin \theta_{k} & \sin \alpha_{k} \sin \theta_{k} & a_{k} \cos \theta_{k} \\ \sin \theta_{k} & \cos \alpha_{k} \cos \theta_{k} & -\sin \alpha_{k} \cos \theta_{k} & a_{k} \sin \theta_{k} \\ 0 & \sin \alpha_{k} & \cos \alpha_{k} & d_{k} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.7)

Uvrštavanjem podataka iz tablice 5.2 u izraz 5.7 dobivaju se matrice homogenih transformacija za koordinatne sustave Jaco robotske ruke.

$$\mathbf{T_0^1} = \begin{bmatrix} \cos\theta_1 & 0 & \sin\theta_1 & 0\\ \sin\theta_1 & 0 & -\cos\theta_1 & 0\\ 0 & 1 & 0 & d_1\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.8)

$$\mathbf{T_1^2} = \begin{bmatrix} \cos\theta_2 & \sin\theta_2 & 0 & a_2\cos\theta_2 \\ \sin\theta_2 & -\cos\theta_2 & 0 & a_2\sin\theta_2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.9)

$$\mathbf{T_2^3} = \begin{bmatrix} \cos\theta_3 & 0 & \sin\theta_3 & 0\\ \sin\theta_3 & 0 & -\cos\theta_3 & 0\\ 0 & 1 & 0 & d_3\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.10)

$$\mathbf{T_3^4} = \begin{bmatrix} \cos\theta_4 & -\cos\alpha_4\sin\theta_4 & \sin\alpha_4\sin\theta_4 & 0\\ \sin\theta_4 & \cos\alpha_4\cos\theta_4 & -\sin\alpha_4\cos\theta_4 & 0\\ 0 & \sin\alpha_4 & \cos\alpha_4 & d_4\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.11)

$$\mathbf{T_4^5} = \begin{bmatrix} \cos\theta_5 & -\cos\alpha_5\sin\theta_5 & \sin\alpha_5\sin\theta_5 & 0\\ \sin\theta_5 & \cos\alpha_5\cos\theta_5 & -\sin\alpha_5\cos\theta_5 & 0\\ 0 & \sin\alpha_5 & \cos\alpha_5 & d_5\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.12)

$$\mathbf{T_5^6} = \begin{bmatrix} \cos\theta_6 & \sin\theta_6 & 0 & 0\\ \sin\theta_6 & -\cos\theta_6 & 0 & 0\\ 0 & 0 & -1 & d_6\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.13)

Množenjem ovih matrica dobiva se matrica homogene transformacije između baze robota i alata 5.14

$$T_{alat}^{baza} = T_1^0 T_2^1 T_3^2 T_4^3 T_5^4 T_5^5$$
(5.14)

Članovi ove matrice određuju se koristeći Matlab skriptu, rezultat računa i skripta ispisani su u dodatku 10. Iz matrice T_{alat}^{baza} dobiva se potpuna informaciju o položaju alata u baznom koordinatnom sustavu kao funkcija zakreta zglobova:

$$\mathbf{w}(\boldsymbol{\theta}) = \begin{bmatrix} \mathbf{p} \\ \mathbf{r}(\mathbf{R}) \end{bmatrix}$$
(5.15)

Vektor 5.15 još se naziva vektorom konfiguracije alata.

5.1.2. Inverzna kinematika

Ciljane konfiguracije izvršnog člana u \mathbb{R}^6 dane su vektorom $\vec{\mathbf{t}} = (\mathbf{t_1}, \dots, \mathbf{t_k})^T$, a trenutne konfiguracije vektorom $\vec{\mathbf{w}} = (\mathbf{w_1}, \dots, \mathbf{w_k})^T$. Kod mehaničkih manipulatora, $\mathbf{w_i}$ je funkcija pozicija zglobova $\boldsymbol{\theta_i} = (\theta_1, \dots, \theta_n)^T$, pa za ovaj slučaj zapisujemo $\vec{\mathbf{w}} = \vec{\mathbf{w}} (\vec{\boldsymbol{\theta}})$. Problem inverzne kinematike definiramo kao pronalaženje vektora $\vec{\boldsymbol{\theta}} = (\theta_1, \dots, \theta_k)^T$ koji zadovoljava izraz:

$$\mathbf{t}_{\mathbf{i}} = \mathbf{w}_{\mathbf{i}}(\boldsymbol{\theta}_{\mathbf{i}}) \tag{5.16}$$

Ono što čini problem inverzne kinematike problemom u užem smislu jest netrivijalnost rješavanja sustava jednadžbi 5.16 kako bi dobili $\theta_i(t_i)$. Razvijeni su različiti pristupi ovom problemu od kojih se mnogi oslanjaju na numeričke metode ili metode pronalaženja minimuma odgovarajuće funkcije [21].

Korištenjem analitičke metode rješavanja opisane u uvodu ovog poglavlja, vektor $\theta_i(t_i)$ dobiva se rješavanjem sustava jednadžbi dobivenog iz vektora konfiguracije alata 5.15. Promatranjem izraza za vektor konfiguracije alata w, moguće je primijetiti da je analitičko rješavanje ovog problema netrivijalan zadatak čije poopćavanje zahtjeva iznimno složen algoritam. Ovo dovodi do zaključka da univerzalni algoritam rješavanja inverzne kinematike zahtjeva drugačiji pristup.

5.2. Iterativno rješavanje kinematičkog problema

Kako bi se izbjeglo komplicirano analitičko rješavanje problema inverzne kinematike, koristi se metoda koja zaobilazi rješavanje sustava jednadžbi 5.16. Prvi se korak sastoji od određivanja matrice Jakobijana manipulatora koja povezuje brzine okretanja zglobova s linearnim i rotacijskim brzinama alata.

Pronalaženjem inverza ove matrice, moguće je odrediti potrebne brzine rotacije zglobova potrebne za ostvarivanje željene brzine gibanja alata. Sintezom upravljačke petlje moguće je ostvariti praćenje referentne veličine u obliku zadanog vektora konfiguracije alata, čime se ostvaruje iterativni postupak rješavanja inverzne kinematike.

5.2.1. Jakobijan manipulatora

Jacobijeva matrica ili Jakobijan manipulatora definira se kao promjena vektora konfiguracije w_i u ovisnosti o θ_i . Radi jednostavnosti zapisa, u nastavku teksta ispušteni su indeksi ovih vektora. Sada je izraz za Jacobijevu matricu:

$$\mathbf{J} = \frac{d\mathbf{w}}{d\boldsymbol{\theta}} \tag{5.17}$$

Počinje se pretpostavkom da za dovoljno malene vrijednosti Δw vrijedi 5.18:

$$\Delta \mathbf{w} \approx \mathbf{J} \Delta \boldsymbol{\theta} \tag{5.18}$$

Inverzom matrice J može se dobiti sljedeći vrlo koristan identitet:

$$\Delta \boldsymbol{\theta} \approx \mathbf{J}^{-1} \Delta \mathbf{w} \tag{5.19}$$

Identitet 5.19 važan je jer omogućuje ostvarivanje regulatora brzine definiranog u 5.2.2.

U generalnom slučaju Jacobijeva matrica predstavlja matricu dimenzija $n \times k$ gdje je $\mathbf{w_i} = (w_1, \dots, w_k)^T$:

$$\mathbf{J} = \begin{bmatrix} \frac{\partial w_1}{\partial \theta_1} & \frac{\partial w_1}{\partial \theta_2} & \cdots & \frac{\partial w_1}{\partial \theta_n} \\ \frac{\partial w_2}{\partial \theta_1} & \frac{\partial w_2}{\partial \theta_2} & \cdots & \frac{\partial w_2}{\partial \theta_n} \\ \vdots & & & \\ \frac{\partial w_k}{\partial \theta_1} & \frac{\partial w_k}{\partial \theta_2} & \cdots & \frac{\partial w_k}{\partial \theta_n} \end{bmatrix}$$
(5.20)

U slučaju kada ova matrica predstavlja prostor vektora konfiguracije w, vrijedi k = 6. Ove parametre ponekad nije jednostavno analitički odrediti, stoga je korištena geometrijska metoda kojom se zaobilazi deriviranje. Neka je \mathbf{p}_j pozicija j-tog zgloba u baznom koordinatnom sustavu i neka je \mathbf{z}_j jedinični vektor osi rotacije j-tog zgloba. Vektor w predstavlja trenutni vektor konfiguracije manipulatora. Komponente rotacijskog dijela Jakobijana J_{ω_j} jednake su jediničnim vektorima osi rotacije zgloba u baznom koordinatnom sustavu:

$$J_{\boldsymbol{\omega}_j} = \frac{\partial \mathbf{w}}{\partial \theta_j} = \mathbf{z}_j \tag{5.21}$$

Uz pretpostavku da je rotacija mjerena u radijanima i da je smjer rotacije određen pravilom desne ruke, za translacijski dio Jakobijana J_{v_i} članovi iznose:

$$J_{\boldsymbol{v}_j} = \frac{\partial \mathbf{w}}{\partial \theta_j} = \mathbf{z}_j \times (\mathbf{w} - \mathbf{p}_j)$$
(5.22)

U slučaju translacijskog zgloba, računanje člana još je jednostavnije jer je promjena pozicije jednaka jediničnom vektoru "osi rotacije" zgloba:

$$J_{\boldsymbol{v}_j} = \frac{\partial \mathbf{w}}{\partial \theta_j} = \mathbf{z}_j \tag{5.23}$$

Dobivena Jacobijeva matrica ima strukturu 5.24, 5.25 :

$$\mathbf{J} = \begin{bmatrix} J_v \\ J_\omega \end{bmatrix}$$
(5.24)

$$\mathbf{J} = \begin{bmatrix} \mathbf{z}_0 \times (\mathbf{w} - \mathbf{p}_0) & \mathbf{z}_1 \times (\mathbf{w} - \mathbf{p}_1) & \dots & \mathbf{z}_{n-1} \times (\mathbf{w} - \mathbf{p}_{n-1}) \\ \mathbf{z}_0 & \mathbf{z}_1 & \dots & \mathbf{z}_{n-1} \end{bmatrix}$$
(5.25)

Izrazom 5.19 lineariziramo model gibanja robota oko točke θ . Uz odgovarajuću frekvenciju osvježavanja matrice **J**, moguće je dobiti kvalitetnu aproksimaciju $\Delta \theta$ za željeni Δw .

Problem kod ovog pristupa nastaje u slučajevima kada matrica J nije kvadratna, što je slučaj kod svih manipulatora s brojem zglobova različitim od 6. Nekvadratnu matricu nije moguće invertirati, što znači da metoda nije univerzalna. Radi potrebe za općim rješenjem koristi se metoda bazirana na Moore-Penroseovom pseudoinverzu [8], koji je svojevrsno poopćenje inverza matrice proizvoljnih dimenzija. Uz određene uvjete ([1]), pseudoinverz Jakobijana određen je izrazom 5.26:

$$\mathbf{J}^{+} = \left(\mathbf{J}^{\dagger}\mathbf{J}\right)^{-1}\mathbf{J}^{\dagger} \tag{5.26}$$

U izrazu 5.26 simbol † označava operaciju hermitske transpozicije. Ovom modifikacijom poopćava se ideja izraza 5.19 na sve manipualtore, a i osigurava se veća numerička stabilnost naspram običnog inverza. U praksi se koriste naprednije metode koje osiguravaju značajniju numeričku stabilizaciju dodatnim članovima, pa izraz 5.19 poprima oblik 5.27.

$$\Delta \boldsymbol{\theta} \approx \mathbf{J}^+ \Delta \mathbf{w} + \mathbf{S} \tag{5.27}$$

U izrazu 5.27 matrica S predstavlja stabilizacijski član koji može biti ovisan o trenutnoj brzini, poziciji ili akceleraciji zglobova. Programska izvedba pomoću KDL biblioteka oslanja se na poboljšanu varijantu metode 5.27 zvanu metoda prigušenih najmanjih kvadrata (*engl. damped least squares*) [5]. Za razliku od ranije navedenih metoda, ova ne traži najmanji vektor $\Delta \theta$ koji zadovoljava 5.17. Metoda prigušenih najmanjih kvadrata nalazi vektor $\Delta \theta$ koji pronalazi minimum iznosa:

$$\|\mathbf{J}\Delta\boldsymbol{\theta} - \Delta\mathbf{w}\|^2 + \lambda^2 \|\Delta\boldsymbol{\theta}\|^2$$
(5.28)

Izraz 5.28 može se svesti na izraz 5.29, gdje se konstanta λ odabire ovisno o konstrukciji manipulatora prema nekoj od razvijenih metoda. Jedan prijedlog korišten pri testiranju koncepta jest postavljanje konstante na vrijednost maksimalne dopuštene promjene vrijednosti nekog zgloba unutar jednog radnog ciklusa.

$$\Delta \boldsymbol{\theta} = \left(\mathbf{J}^{\dagger} \mathbf{J} + \lambda^{2} \mathbf{I} \right)^{-1} \mathbf{J}^{\dagger} \Delta \mathbf{w}$$
 (5.29)

Ispostavlja se da je ovakva izvedba superiorna prema ostalim metodama, što se pokazuje u odlomku 5.2.3. Primijećeno je da izraz 5.29 za $\lambda = 0$ postaje 5.27.

5.2.2. Upravljačka petlja

Razmatranjem izraza 5.19 moguće je posredno doći do metode čijom se primjenom u upravljačkoj petlji teoretski ostvaruje kretanje po putanji. Iterativnom primjenom izraza 5.19 moguće je ostvariti kretanje ruke prema željenom vektoru konfiguracije dokle god je poznata pogreška e. Za sintezu Jacobijeve matrice potrebni su podaci o trenutnim pozicijama zglobova θ , koji čine unutarnju povratnu vezu petlje. Vanjska povratna vezu korištena za računanje potrebne promjene vektora konfiguracije ostvaruje se pomoću bloka funkcije direktne kinematike **DK**. Blok **J**⁻¹ u ovom slučaju podrazumijeva bilo koju od metoda 5.19, 5.27 ili 5.29 kojima povezujemo promjene zglobova s promjenama vektora konfiguracije.

Slika 5.3: Blok dijagram izvedbe upravljačke petlje manipulatora

Izrazom 5.30 definira se vektor razlike translacija u iteraciji *i*. Njime je definirana razlika u poziciji između ciljane i trenutne konfiguracije \mathbf{t}_T i \mathbf{c}_T unutar baznog koordinatnog sustava.

$$\mathbf{e}_T = \mathbf{t}_T - \mathbf{c}_T \tag{5.30}$$

Kako bi se potpuno definirala potrebna promjena konfiguracije, potrebno je poznavati i razliku u orijentaciji. Također, mjera razlike u orijentaciji mora biti kompatibilna s geometrijskom izvedbom Jakobijana koju koristimo u izračunima. Ovo čini izračun nešto složenijim, te se on ne može svesti na oduzimanje.

$$\mathbf{e}_{O} = 0.5 \left(\mathbf{R}_{x_{c}} \times \mathbf{R}_{x_{t}} + \mathbf{R}_{y_{c}} \times \mathbf{R}_{y_{t}} + \mathbf{R}_{z_{c}} \times \mathbf{R}_{z_{t}} \right)$$
(5.31)

Koristi se izraz 5.31 definiran u [15], koji je pogodan za kinematičke lance koji ne posjeduju sferne zglobove. Elementi izraza predstavljaju stupce rotacijskih matrica koji korespondiraju s orijentacijom koordinatnog sustava koji je njima definiran.

Razliku referentnog i stvarnog vektora konfiguracije alata sustav množi prema izrazima 5.19, 5.27 ili 5.29. Kao rezultat množenja dobivaju se potrebni zakreti zglobova Δq . Pri praćenju putanje manipulator nikad neće biti daleko od tražene pozicije, čime se bez gubitka općenitosti dobiveni potrebni pomaci (nakon skaliranja) mogu tretirati kao brzine.

$$\Delta \mathbf{q} \approx \boldsymbol{\omega}$$
 (5.32)

Vektor funkcija f u ovom slučaju označava preračunavanje kutova očitanih s manipulatora ruke θ_r u kuteve koji odgovaraju postavljenom matematičkom modelu θ . Dobiveni kutevi korišteni su za osvježavanje matrice J i dobivanje trenutnog vektora konfiguracije alata w. Iz 5.3 primjećuje se struktura sa P (proporcionalnim) regulatorom jediničnog pojačanja, no sustav je moguće proširiti složenijim oblicima regulatora u nadređenoj i/ili podređenoj petlji.

5.2.3. Provjera sustava

Zamišljena upravljačka shema sustava prikazana na slici 5.3 provjerava se u Matlabu. Prvi je korak rješavanje direktne kinematike te generiranje funkcije jacoFK (q) koja kao argumente prima zakrete zglobova q, a kao rezultat vraća matricu homogene transformacije alata. Matrica Jakobijana sastavlja se geometrijskom metodom u funkciji JacoJ(q, dw), radi boljih performansi od simboličke zamjene. Konačno, stvara se upravljačka petlja koja se izvodi sa proizvoljnim brojem koraka. Uključena je i funkcija skaliranje koja s obzirom na maksimalnu brzinu skalira pogrešku *e*.

Algorithm 1 Upravljačka petlja

```
Ulaz: w – referentni vektor konfiguracije, q – početni položaj zglobova.

broje koraka := 6

r := eul2rot(w_{4-6})

for (i := 0; i < broj koraka; i + +) do

T := jacoFK(q)

R := T_{1-3,1-3}

e_{1-3} := w_{1-3} - T_{1-3,4}

e_{4-6} := 0.5 (R_x \times r_x + R_y \times r_y + R_z \times r_z)

e := skaliranje(e)

J := jacoJ(q,e)

dq := J^{-1}e

q := q + dq

end for
```

Radna frekvencija detekcije kreće se oko 30 Hz, a planirana frekvencija osvježava-

Slika 5.4: Promjena pozicije inverzom Jakobijana. Slika a) (lijevo) sadrži translacijski odziv, b) (desno) sadrži odziv orijentacije sustava u Eulerovim kutevima.

nja matrice Jakobijana je 50 puta u sekundi. Iz ovih smjernica uzimamo kako ćemo pri testiranju osvježavati matricu Jakobijana 6 puta pri izvršavanju kretanja reda veličine nekoliko centimetara. Iz grafa 5.4 vidljivo je kako pri čistom translacijskom kretanju upravljačka petlja s P regulatorom ostvaruje željenu konfiguraciju bez oscilacija. Kretanje koje uključuje rotacije pokazalo se nešto većim izazovom za metodu baziranu na korištenju običnog inverza Jakobijana (5.19).

Slika 5.5: Promjena orijentacije inverzom Jakobijana. Slika a) (lijevo) sadrži translacijski odziv, b) (desno) sadrži odziv orijentacije sustava u Eulerovim kutevima.

Sa slike 5.5 vidi se kako se pri isključivo rotacijskom kretanju korištenjem izraza 5.19 ne može dobiti zadovoljavajuće rješenje. Ovaj slučaj jednostavan je dokaz ranije tvrdnje kako "obični" Jakobijan često nije dovoljno numerički stabilan. Kako bi doskočili ovom problemu korištena je metoda prigušenih najmanjih kvadrata iz izraza 5.29 sa faktorom $\lambda = 0.2$.

Iz slike 5.6 vidi se kako je ostvareno drastično bolje ponašanje. Na prikazu translacije potrebno je primijetiti nakupinu crvenih indikatora u jednoj točki, što znači da

Slika 5.6: Promjena orijentacije metodom prigušenih najmanjih kvadrata. Slika a) (lijevo) sadrži translacijski odziv, b) (desno) sadrži odziv orijentacije sustava u Eulerovim kutevima.

je pozicija izvršnog člana približno konstantna. Potrebno je još ispitati ponašanje pri promjeni cijelog vektora konfiguracije.

Slika 5.7: Promjena vektora konfiguracije metodom prigušenih najmanjih kvadrata. Slika a) (lijevo) sadrži translacijski odziv, b) (desno) sadrži odziv orijentacije sustava predstavljene u Eulerovim kutevima.

Rezultati prikazani na slici 5.7 dovoljan su dokaz da se metoda prigušenih najmanjih kvadrata u teoriji može koristiti za upravljanje manipulatorom sa 6 stupnjeva slobode. U ovom preliminarnom testiranju nije uključen model motora i dinamike manipulatora, stoga će konačnu programsku izvedbu biti potrebno testirati na simulaciji u Gazebo programskom okruženju.

6. Detekcijski algoritam

Postoje mnogobrojni načini kojima se može upravljati pokretima ruke. U ovom radu koristi se RGB-Dubinska kamera koja omogućuje snimanje pokreta ljudske ruke, a zatim se svaka snimljena slika prevodi u informaciju. Tako dobivena informacija govori o trenutnoj lokaciji i orijentaciji ruke u trodimenzionalnom prostoru promatranom dubinskom kamerom.

Problem detekcije položaja ruke relativno je uspješno riješen i kod klasičnih slika (npr. [6], [16] ili [13]), ali je taj pristup obilježen prevelikom ovisnošću o svjetlosnim parametrima slike te potrebom za većim računalnim resursima. Takvi zahtjevi uvelike otežavaju detekciju u stvarnom vremenu na osobnom računalu.

U detekciji objekata kod dubinske slike, prikladna je većina pristupa detekciji objekata kao kod klasične slike s intenzitetom svjetlosti u pojedinim točkama. Pri tome se dubinska slika može promatrati kao klasična siva slika te se mogu raditi detekcije nad istom, ali se ne smije zaboraviti da informacija koju sadrži pojedini slikovni element ne odgovara intenzitetu, već je mjera udaljenosti. Također, uobičajena crno-bijela slika se sastoji od 8-bitnih vrijednosti što polučuje 256 različitih slikovnih elemenata što je u većini slučajeva zadovoljavajuće. Za razliku od uobičajene crno-bijele slike, kod dubinske slike s 256 različitih slikovnih elemenata može se detektirati 256 različitih dubina, što nije dovoljno ukoliko se želi ostvariti detekciju na većem rasponu (1m) uz veliku preciznost (1mm). Stoga je u slučaju dubinske slike uobičajen zapis pomoću 2 okteta ili broja s jednostrukom preciznosti po IEEE 754 standardu. Ovaj potonji zapis kompatibilan je s korištenom OpenCV bibliotekom.

Razvijeni detekcijski algoritam podijeljen je u dvije slijedne komponente. Lokalizacija dlana u slici te određivanje parametara položaja u kojem se dlan nalazi.

6.1. Lokalizacija dlana u slici

Određivanje lokacije ruke na dubinskoj slici je kao i kod klasičnih slika, prvi korak u preciznom detektiranju položaja u kojem se ruka nalazi. Postoje mnogobrojne metode

koje omogućuju rješavanje takvog problema, ali vrlo rijetko se nalazi metoda koja ne koristi neki oblik pomagala kako bi se što lakše i brže odredila lokacija ruke na dubinskoj slici. Tako se više vremena može posvetiti samom određivanju položaja u kojem se ruka nalazi.

S obzirom na to da se uvođenjem dodatnih dimenzija slike povećava kompleksnost sustava, takvi pokušaji su zanemareni, ali valja spomenuti kako se filtriranjem isključivo boje kože može olakšati pretraga ruke. Neki od takvih pristupa koriste brzu detekciju lica i stvaranje uzoraka parametara boje kože detektirane osobe u svrhu poboljšavanja filtera boje pomoću dobivenih parametara.

6.1.1. Slične metode

Qian i suradnici razvili su jednu od najkvalitetnijih metoda danas [12]. Metoda inicijalno pretpostavlja kako se ruka nalazi najbliže kameri u odnosu na ostale objekte u dubinskoj slici. Također, pretpostavlja korištenje nereflektirajuće narukvice na zapešću kojom se lako može izolirati ruka od okoline algoritmom poplavljivanja interesnog područja (eng. *flood fill*).

Bolja inicijalna metoda preuzeta je iz rada Shottona i suradnika [14] u kojem detektiraju položaj čovjeka na dubinskoj slici. Implementirano prepoznavanje ljudskog kostura pomoću Kinect uređaja temelji se na njihovoj metodi. Tu inicijalnu metodu koriste Thompson i suradnici [17]. Metoda koristi jednostavne značajke $f_{\theta}(I, \mathbf{x})$ za svaki slikovni element \mathbf{x} koje su invarijantne na dubinu $d_I(\mathbf{x})$ (Izraz 6.1).

$$f_{\theta}(I, \mathbf{x}) = d_I(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})}) - d_I(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})})$$
(6.1)

Zatim se za svaki slikovni element x, učenjem šume nasumičnih stabala odluke (eng. *random decision forrest*), odredi svega nekoliko parova odmaka (u, v) koji za svaki slikovni element dobro binarno klasificiraju da li on pripada naučenom skupu objekata ili ne.

Grupiranjem slikovnih elemenata koji su imali pozitivan odziv klasifikatora može se izolirati ruka ili više njih na dubinskoj slici.

Iako je metoda uspješna i relativno brza, pogotovo na grafičkoj kartici za koju je primarno namijenjena, u slučaju ovog rada nedostatak takve metode bilo bi trajanje njenog učenja. Naime, autori navode kako na klasteru od 1000 jezgara učenje šume od 3 stabla do dubine 20 traje 1 dan, a uzevši u obzir nedostatak navedenih resursa, takav pristup u ovom radu nije moguć.
6.1.2. Razvijena metoda

Korištena RGB-Dubinska kamera stvara dubinsku sliku veličine 640x480 slikovnih elemenata. Vrijednost svakog slikovnog elementa odgovara izračunatom disparitetu na toj poziciji, a pomoću *freenect* biblioteke takav se podatak može pretvoriti u dubinu danu u milimetrima.

Definiran je koordinatni sustav sa središtem u očištu kamere i osima x i y s odgovarajućim indeksom (u + 320, v + 240) slikovnog elementa što omogućuje pomak središta koordinatnog sustava u središte slike. Osi x i y su skalirane na odmak od središta u milimetrima. Os z odgovara dubini slike te je također u milimetrima. Prirodom perspektivne projekcije kakvu daje RGB-Dubinska kamera, udaljenost od kamere ne odgovara udaljenosti do projekcijske ravnine. To onemogućuje izravno preslikavanje u z-os koordinatnog sustava, ali kako dlan na radnim udaljenostima ne zauzima više od 15% slike, na tom području je aproksimacija prihvatljiva.

Jedna od mogućih aproksimativnih formula za preslikavanje dispariteta u udaljenost od kamere, kakvu koristi *freenect* biblioteka [11] je sljedeća (Izraz 6.2):

$$z_d(\mathbf{x}) = \frac{1000}{-0.00307 * d(\mathbf{x}) + 3.33}$$
(6.2)

Dobivenim vrijednostima dubine može se izračunati x i y vrijednosti koordinantnog sustava na sljedeći način:

$$x(z,u) = 0.0021(v - 320)(z - 10)$$
(6.3)

$$y(z,v) = 0.0021(v - 240)(z - 10)$$
(6.4)

Kao i kod metode Qiana i suradnika [12], ali i mnogih drugih, i u ovom radu pretpostavlja se kako se ruka nalazi na najmanjoj dubini (niti jedan predmet u vidnom polju kamere nije bliži od ruke).

Za razliku od spomenute metode, u ostvarenoj metodi nije potrebno koristiti pomagala kao što je nereflektirajuća crna narukvica na zapešću. Izolacija dlana od okoline vrši se jednostavnim dubinskim filterom na empirijski određenoj dubini od 110mm u odnosu na globalni minimum dubine slike, što je ujedno i globalni minimum dijela slike na kojem se nalazi ruka. Iako najveći raspon prosječne ruke premašuje 110mm, to ne predstavlja prevelik problem.

Na slikama 6.1 prikazani su primjeri ispravne izolacije dlana na dubinskoj slici. Radilo se o uspravnom dlanu (a), dlanu s dorzalne strane (b), pa čak dlanu u vodoravnoj ravnini (c) ili zatvorenom dlanu (d), ovakav jednostavni detektor sposoban je razlučiti

Slika 6.1: Uspješno izoliranje dlana na slici. Slika (a) (lijevo gore) predstavlja izoliranje uspravnog dlana, slika (b) (desno gore) izoliranje dorzalne strane dlana, slika (c) (lijevo dolje) izoliranje dlana u vodoravnoj ravnini, slika (d) (desno dolje) izoliranje šake

Slika 6.2: Prihvatljivo izoliranje dlana na slici. Slika (a) (lijevo) predstavlja izostavljanje karpalnog predjela dlana, slika (b) (desno) zahvaćena podlaktica

dlan kako bi što više procesnog vremena mogao prepustiti sljedećim fazama detekcije.

U nekim slučajevima detekcija nije ispravna, ali je u granicama otpornosti kasnijih

faza detektora. Tako se pri većim kutovima dlana u odnosu na projekcijsku ravninu mogu dogoditi dva slučaja (Slika 6.2). Ako je najbliža točka dlana na području zapešća, zahvaćen je i dio podlaktice, a ako je najbliža točka na području prstiju, dlan djelomično izlazi iz granica dubinskog filtera.

Slika 6.3: Pogrešna izolacija dlana, zahvaćen i dio podlaktice

Oba slučaja većinom ne predstavljaju prevelik problem, no postoje i neke iznimke. Naime, ako je podlaktica u razini dlana, detektor neće biti sposoban razlučiti dlan od podlaktice (Slika 6.3). Takav slučaj predstavlja problem za detektor, ali takav slučaj ne predstavlja problem u korištenju detektora ako je osoba koja ga koristi svjesna takvog nedostatka.

Rezultat izolacije dlana uz sliku na kojoj se nalazi samo dlan je i (x, y, z) koordinata središta dlana u prostoru. Središte je dobiveno pronalaskom konture dlana te izlučivanjem njenog središta. Prije pronalaska konture na binarnoj slici izvodi se morfološka operacija zatvaranja s jezgrom veličine u radijusu od 2 susjedna slikovna elementa (Manhattan udaljenost). U slučaju da je središte konture izvan konture pa samim time i dlana, takva detekcija biva odbačena. Iako postoje položaji ruke gdje je to slučaj, takve položaje u većini slučajeva Kinect nije sposoban registrirati (vidi 3.1).

Jednom kada je dlan segmentiran od pozadine znatno se olakšavaju daljnje operacije. Za razliku od spomenutih naprednijih radova ovdje se neće razmatrati određivanje precizne lokacije ruke u vidu modela od više od 20 stupnjeva slobode. Naime, uzevši u obzir primjenu detektora za upravljanje robotskom rukom, prihvatljiva doza informacije sastoji se od binarne informacije o stupnju zatvorenosti dlana i radij vektora lokacije dlana te eventualno orijentacija dlana u smjeru x-osi definiranog koordinatnog sustava.

Neki od ključnih postupaka u detekciji izvedeni su pomoću biblioteke OpenCV:

segmentacija slike na osnovu praga je postupak prilikom kojeg se s obzirom na željenu vrijednost praga može konstruirati binarna slika (maska) gdje jedna vrijednost pokriva sve elemente čija je vrijednost ispod praga, a druga vrijednost sve elemente iznad praga. Na slici 6.4 (b) prikazana je binarna slika dobivena segmentacijom po dubini slike (a) pri čemu je prag određen kao 110mm u dubinu od minimalne vrijednosti dubine na slici.

Slika 6.4: Segmentacija slike na osnovu praga, lijevo ulazna dubinska slika i desno generirana maska

• dilatacija i erozija binarne slike su morfološke transformacije. Dilatacija je transformacija prilikom koje se generira nova slika iste veličine. Za svaki osvijetljeni slikovni element u početnoj slici se u ovoj slici osvjetljava element na toj lokaciji zajedno s n slikovnih elemenata u njegovoj okolini. Takvim postupkom povećane su osvijetljene površine na slici. Erozija je slična dilataciji s razlikom što se postupak temelji na neosvijetljenim slikovnim elementima.

Na slici 6.5 (c) je prikazana morfološka transformacija izvorne slike (a) operacijom zatvaranja (dilatacija pa erozija) uz djelovanje na okolnih 8 slikovnih elemenata. Kao što je prikazano, ovakav slijed transformacija pokriva moguće šumove unutar osvijetljenog dijela slike te može spojiti bliske skupine osvijetljenih slikovnih elemenata što je korisno ako na primjer šum *odsiječe* prst od ostatka ruke.

 određivanje obujmica skupina osvijetljenih slikovnih elemenata koristan je način za aproksimaciju oblika na slici. Prvi korak u određivanju obujmica (engl. *convex hull*) je generiranje kontura oko skupina susjednih slikovnih elemenata. Jednom kada je kontura izgenerirana jednostavno se može naći obujmica kao minimalan konveksan poligon koji obuhvaća konturu.

Na slici 6.6 običnoj je binarnoj slici sivom bojom pridodana razlika u površini

Slika 6.5: Morfološka transformacija binarne slike operacijom zatvaranja, s lijeva na desno ulazna slika, međukorak te slika nakon transfomracije

konture oblika i obujmice. Ta razlika može se iskoristiti kao dobar indikator zatvorenosti dlana.

Slika 6.6: Obujmica i kontura ruke na slici

6.2. Određivanje poze dlana

6.2.1. Slične metode

Različiti radovi predlažu različite metode određivanja poze u kojoj se nalazi ruka, ali i u različitom opsegu preciznosti.

Qian i suradnici u svom radu [12] modelirali su prosječnu ruku pomoću 48 sfera uz 26 stupnjeva slobode. Pretražuju ekstreme u području dlana te im oni služe kao kandidati za vrhove prstiju i zapešće. Pomoću inverzne kinematike nad modelom generiraju moguće položaje ruke te svaki od njih ocjenjuju s obzirom na sličnost s dubinskom slikom. Najbolji je model proglašen trenutnim položajem ruke.

Thompson i suradnici u svojem radu [17] koriste naučenu kaskadu konvolucijskih neuronskih mreža. Učenje je izvršeno na 70 000 označenih slika. Mreže na izlazu daju dvodimenzionalnu Gaussovu razdiobu vjerojatnosti da se na određenoj lokaciji nalazi jedna od 36 označenih lokacija na ruci (npr. vrh malog prsta). I u ovom radu inverznom kinematikom traži se model ruke koji najviše odgovara razdiobama. Pri tome je rabljen često korišten model ruke otvorenog koda *libhand* [20].

Valja napomenuti kako su navedene metode sposobne prepoznati ruku u jednoj dubinskoj slici te im ne treba niz slika.

6.2.2. Razvijena brza metoda određivanja zatvorenosti dlana

Zatvorenost dlana je apstraktan pojam te ga treba pobliže definirati. Prilično je intuitivan pojam otvoreni dlan koji predstavlja dlan u planarnom položaju, pri čemu kutevi između članaka teže nuli (Slika 6.1 a). Isto tako jasan je pojam zatvorenog dlana (Slika 6.1 d). Teško je pak definirati stupanj zatvorenosti prilikom neke geste, pri kojoj dlan nije ni potpuno otvoren ni zatvoren, pogotovo ako je svaki prst pod svojim kutom. Tako se u ovom radu stupanj zatvorenosti određuje binarno pri čemu *0* predstavlja zatvoren dlan, a *1* sve ostale položaje.

Navedeni pristup sasvim je dovoljan pri kontroli željenog robota jer takav klasifikator nam određuje hoće li se prsti robotske ruke skupiti ili ne. Naime, iako robot posjeduje prste, nezgrapno bi bilo odrediti parametar zatvorenosti za svaki prst kako broj robotskih prstiju (3) ne korespondira broju ljudskih.

Klasifikator je napravljen jednostavno i empirijski. Izračuna se površina binarne slike zahvaćena konturom dlana ($P_k(\mathbf{s})$) i površina obujmice iste konture ($P_o(\mathbf{s})$). Ge-

nerira se značajka koja predstavlja omjer površine konture i obujmice (6.5).

$$f_1(\mathbf{s}) = \frac{P_k(\mathbf{s})}{P_o(\mathbf{s})} \tag{6.5}$$

Potom se normalizira površina konture kako bi bila invarijantna na dubinu te se ista tretira kao druga značajka (6.6).

$$f_2(\mathbf{s}) = P_k'(\mathbf{s}) \tag{6.6}$$

Određivanje zatvorenosti dlana vrši se određivanjem predznaka linearne kombinacije dvije navedene značajke te još ostaje samo odrediti parametre k i l (6.7).

$$Z(\mathbf{s}) = \begin{cases} 1 & ako \quad kf_1(\mathbf{s}) + lf_2(\mathbf{s}) > 0\\ 0 & ako \quad kf_1(\mathbf{s}) + lf_2(\mathbf{s}) \le 0 \end{cases}$$
(6.7)

Učenje klasifikatora

Nakon što su definirane značajke, generirano je 2559 ispitnih primjera od kojih 1239 s otvorenim dlanom i 1320 sa zatvorenim dlanom. Grafikon 6.7 prikazuje točke koje predstavljaju slike u ravnini određenoj značajkama f_1 i f_2 s tim da zatvoreni dlanovi su prikazani zelenom bojom, a otvoreni crvenom.

U ravnini značajki grafičkom metodom je aproksimiran pravac koji razdvaja dvije klase, zatvorene i otvorene dlanove s greškom od 3.4%. Težilo se preciznijoj detekciji zatvorenog dlana, što je uzrokovalo gubitak u preciznosti detekcije otvorenog dlana. Takav pristup je vođen pretpostavkom da prilikom upravljanja robotskom rukom zatvoreni dlan podrazumijeva kako ruka drži neki objekt te želimo biti sigurni kako ga neće olako ispustiti bez naše volje. Iako za neki teži problem ovakav pristup detekciji otvorenosti dlana ne bi bio dobar te bi se trebalo okrenuti naprednijim metodama, u ovom slučaju rezultat je sasvim zadovoljavajuć s obzirom na poprilično jasnu distinkciju između dviju klasa.

Dobiveni pravac ima parametre k = 0.67635 i l = 0.035558 koji se koriste u detektoru prilikom određivanja zatvorenosti dlana.

Rezultati

Posjedovanjem slijednih slika može se ublažiti utjecaj mogućih oscilacija na detekciju.

Prilikom određivanja zatvorenosti dlana dobivena vrijednost omjera (Izraz 6.5) sprema se u vektor koji sadrži prethodnih n omjera iz prethodnih n slika te se u pojedinom trenutku t vrijednost može odrediti pomoću težinskog prosjeka vrijednosti u

Grafikon 6.7: Skup za učenje (crveno - slike zatvorenih dlanova, zeleno - slike otvorenih dlanova)

vektoru.

$$F_1(\mathbf{s}(t)) = \sum_{0}^{n-1} w_i f_z(\mathbf{s}(t-i))$$
(6.8)

Iako je inicijalno razmatrana mogućnost Gaussove raspodjele težina (w_i) , ipak se dovoljno dobrim klasifikatorom iskazala aritmetička sredina zadnjih n = 7 slika. Sasvim analogno se pristupa s drugom značajkom (izraz 6.6).

Ispitana je brzina pojedine detekcije detektora. Ako se izuzme vrijeme koje je potrebno Kinectu da dostavi sliku, vrijeme detekcije implementacije detektora neoptimiziranom Python skriptom je $(7.7 \pm 1.6)ms$ ispitano na procesoru porodice *Intel Core i5*. Takva brza detekcija posljedica je jednostavne metode koji ne sadrži računski zahtjevne algoritme. Kako je Kinect u mogućnosti generirati oko 25 slika u sekundi, a algoritam radi brzinom većom od 125 slika u sekundi, postoji veliki prostor za nadogradnju mogućnosti algoritma. Ispitivanje točnosti detektora može se izvesti na dva načina. Kako detektor vrši detekciju na jednoj slici, a koristi slijedne slike za ispravak mogućih nepravilnosti može se očekivati da će u slijednim slikama detektor raditi bolje.

Uz pretpostavku da se dlan nalazi na najbližoj dubini u slici, promatrati uspješnost detekcije lokacije dlana svelo bi se na promatranje uspješnosti dubinske kamere u određivanju dubinske slike o čemu ovdje neće biti riječ.

Preostaje nam ispitati klasifikator zatvorenosti dlana. U oba slučaja vršit će se ispitivanje nad istim slikama s time da će u slučaju slijednih slika značajke ovisiti i o prethodnim slikama (vidi 6.2.2).

Ispitivanje je vršeno na 3108 slika od kojih 1323 s otvorenim dlanom i 1785 sa zatvorenim dlanom. U oba slučaja ispitivao se udio ispravno određenih slika. Kako je klasifikator binarni, udio lažno pozitivnih slika zatvorenog dlana bit će jednak udjelu lažno negativnih slika otvorenog dlana i obrnuto. Za razliku od učenja koje je provođeno na jednoj osobi, u ispitivanju su sudjelovale tri osobe.

Tablica 6.1: Rezultati ispitivanja klasifikacije otvorenog dlana u pojedinoj slici

	Ispravno	Neispravnih	Ukupno
Broj primjeraka	1203	120	1323
Udio	90.9%	9.1%	

Tablica 6.2: Rezultati ispitivanja klasifikacije zatvorenog dlana u pojedinoj slici

	Ispravno	Neispravnih	Ukupno
Broj primjeraka	1728	57	1785
Udio	96.8%	3.2%	

Tablica 6.3: Rezultati ispitivanja klasifikacije otvorenog dlana u slijednim slikama

	Ispravno	Neispravnih	Ukupno
Broj primjeraka	1256	67	1323
Udio	94.9%	5.1%	

Tablica 6.4: Rezultati ispitivanja klasifikacije zatvorenog dlana u slijednim slikama

	Ispravno	Neispravnih	Ukupno
Broj primjeraka	1740	45	1785
Udio	97.5%	2.5%	

Rezultati ispitivanja detekcija u pojedinoj slici

U slučaju ispitivanja klasifikacije otvorenog dlana (Tablica 6.1) klasifikator je uspio ispravno prepoznati otvoreni dlan u 90.9% slučajeva, dok je kod klasifikacije zatvorenog dlana (Tablica 6.2) zatvoreni dlan uspješno prepoznat u 96.8% slučajeva što je zadovoljavajući rezultat.

Rezultati ispitivanja detekcija u slijednim slikama

U slučaju ispitivanja klasifikacije otvorenog dlana (Tablica 6.3) klasifikator je uspio ispravno prepoznati otvoreni dlan u 94.9% slučajeva, dok je kod klasifikacije zatvorenog dlana (Tablica 6.4) uspio prepoznati zatvoreni dlan u 97.5% slučajeva što je zadovoljavajući rezultat.

Usporedba ispitivanja

Kao što se može primijetiti, klasifikator je bolji u detekciji zatvorenih dlanova i u slijednim slikama i u pojedinoj slici, što je i bio cilj modeliranja klasifikatora, ali se isto može objasniti i time da zatvoreni dlan izgleda poprilično jednako iz bilo kojeg kuta, što nije slučaj za otvoreni dlan.

Isto tako, ispitivanjem je potvrđena opravdanost korištenja informacija iz prethodnih slika kojima se može znatno poboljšati detekcija smanjenjem oscilacija uprosječivanjem vremenski susjednih detekcija. U našim primjerima postignuto je smanjenje neispravnih detekcija u rasponu od 1.3 do čak 2 puta.

6.2.3. Razvijena metoda primjenom dubokih konvolucijskih neuronskih mreža

Inicijalna estimacija lokacije dlana u slici ne traje dugo te daljnja procjena poze dlana može trajati puno duže. Već i gore navedena brza metoda određivanja zatvorenosti dlana i na najslabijim uređajima ostavlja poprilično procesorsko vrijeme neiskorišteno. Odlučeno je dakle iskoristiti do tada neiskorišteno procesorsko vrijeme kako bi detektor dao bolji opis poze u kojoj se dlan nalazi.

Prikupljanje podataka

Prethodna metoda temelji se na jednostavnim, ali vrlo uspješnim heuristikama. Ipak, za opisivanje poze dlana s više parametara takav pristup puno je zahtjevniji. Jedan od

alternativnih skupova pristupa su tzv. pristupi vođeni samim podacima (engl. *data-driven approach*). Za takav pristup valja prikupiti dovoljnu količinu željenih (u kon-kretnom slučaju i označenih) podataka te nad njima naučiti model. Model bi opisivao pozu dlana koji mu je predan kao slika na ulazu.

U nedostatku bolje opreme (konkretno žiroskopa kakav se nalazi u većini mobilnih uređaja) koja bi omogućila brže i preciznije prikupljanje željenih podataka s detaljnijim opisom poze dlana, valjalo je osmisliti efikasan način prikupljanja što većeg broja raznovrsnih podataka uz njihovo precizno označavanje.

Klasifikator poze ima dva izlaza. Prvi određuje stupanj otvorenosti dlana kao i u prethodnoj metodi, dok drugi određuje rotaciju dlana oko x osi. Takva rotacija omogućuje robotskoj ruci da uhvati nešto iznad, ispred ili ispod dlana te je zbog toga odabrana kao najkorisnija u usporedbi s rotacijama oko y ili z osi. Podaci su prikupljani u 15 različitih klasa kao kartezijev produkt tri stupnja zatvorenosti dlana (0, 0.5, 1)te 5 različitih rotacija oko x osi (-90 deg, -45 deg, 0 deg, 45 deg, 90 deg). Kada bi u istu proceduru bile uključene i druge dvije rotacije, tada bi ukupan broj klasa bio $3 \cdot 5 \cdot 5 = 375$ što uz dane resurse ne bi bilo izvedivo.

Slika 6.8: Neki od prikupljenih označenih podataka

Ukupno je prikupljeno 61395 označenih slika dlana podijeljenih u 3 skupa (učenje, validacija i ispitivanje) u omjeru 8 : 1 : 1. Prikupljene slike su dubinske slike dlana dobivenog detekcijom segmentirane na osnovu praga opisanog u postupku detekcije te binarizirane tako da slikovni elementi dlana imaju vrijednost 1, a ostali 0 (slika 6.8).

Razlog binarizaciji i segmentaciji leži u tome što se pri učenju modela želi reducirati količinu informacija koje klasifikator dobiva na ulaz u postupku učenja kako ih ne bi prenaučio. Naime, uklanjanjem pozadine klasifikator neće biti opterećen time što je u pozadini dlana već morati naučiti heuristike isključivo temeljem slikovnih elemenata dlana. Također, iz sličnog razloga ne želi se klasifikatoru pružiti informaciju na kojoj udaljenosti se dlan nalazio u danoj slici kako se ne bi oslonio i na tu informaciju.

Arhitektura

Oformljena konvolucijska mreža na ulazu prima binariziranu sliku dimenzija $64 \times 64 \times 1$ te na izlazu generira dva vektora. Prvi vektor je trodimenzionalni i opisuje zatvorenost dlana kako je opisano, dok je drugi peterodimenzionalni i opisuje orijentaciju. Vrijednosti odgovaraju vjerojatnosti s kojom ulazna slika pripada određenoj klasi.

Takav diskretiziran izlaz se dalje pretvara u dvije vrijednosti, postotak zatvorenosti dlana i orijentaciju dlana kao broj između 0 i 1 gdje 0 odgovara dlanu s vidljivom palmarnom stranom dlana dok 1 pri vidljivoj dorzalnoj strani dlana prilikom rotacije oko x osi definiranog sustava.

Korištena konvolucijska mreža sastoji se od 5 konvolucijskih slojeva s filterom veličine 3×3 slikovnih elemenata i 16 kanala, a iza svakog osim prvog slijedi podotipkavajući sloj s filterom veličine 2×2 koji smanjuje dimenzionalnost ulaznog tenzora na četvrtinu njegove inicijalne veličine uzimanjem maksimalne vrijednosti u pojedinim oknima (engl. *maxpool*). Za prijenosnu funkciju u svakom sloju korištena je ispravljena linearna funkcija (engl. *rectified linear unit*) oblika:

$$f(x) = max(0, x)$$

Tako je na predzadnjem sloju dobivena reprezentacija slike pomoću tenzora veličine $4 \times 4 \times 16$ koji se izravnava (engl. *flatten*) u 256 dimenzionalni vektor dobivenih značajki. Takve značajke su dalje jednim potpuno povezanim slojem povezane s gore navedenim izlazom neuronske mreže.

Učenje mreže provodi se algoritmom unazadne propagacije gradijenata (engl. *bac-kpropagation*) pri čemu se za grešku koristi težinski zbroj unakrsnih entropija softmax funkcije izlaza za pojedinu klasu (engl. *softmax cross entropy loss*).

Također, radi sprečavanja prenaučivanja modela, u funkciju gubitka pridodan je i L2 gubitak učenih težina.

U implementaciji neuronske mreže korištena je bibiloteka *TensorFlow*. Učenje je trajalo 3 sata na grafičkoj kartici *Nvidia GeForce 840M* pri čemu bi se pri svakoj stagnaciji faktora učenja on smanjivao 3 puta.

Rezultati

Dobiveni rezultati prikazani su na slijedećoj tablici:

Vrsta skupa	Točnost otvorenosti	Točnost orijentacije	Ukupna točnost
Skup za učenje	99.8%	99.2%	98.9%
Skup za validaciju	97.1%	94.5%	92.1%
Skup za ispitivanje	97.0%	94.6%	92.2%

Tablica 6.5: Prikaz točnosti naučene konvolucijske mreže

Kao što se vidi u tablici 6.5 ukupna točnost mreže prelazi 92% prilikom klasifikacije na pojedinačnoj slici. Klasifikacija se dodatno poboljšava uprosječavanjem zadnjih 7 slika dubinske kamere, kao i u odlomku 6.2.2 te tako točnost raste na 96%. Kao što je bilo i očekivano, klasifikacija otvorenosti dlana je puno lakši problem od orijentacije te u pojedinačnim slikama je dobivena točnost od 97%.

Za vizualizaciju dobivenih visokodimenzionalnih podataka korištena je dobro poznata metoda redukcije dimenzionalnosti t-SNE [19] pomoću koje je vizualiziran izlaz zadnjeg potpuno povezanog sloja neuronske mreže. Metoda pokušava očuvati euklidsku udaljenost između vektora u višedimenzionalnom prostoru pri prenošenju u nižedimenzionalni prostor (u ovom slučaju dvije dimenzije). Metoda je iterativna te pokušava minimizirati pogrešku euklidske udaljenosti među primjerima.

Pretpostavka dobro naučenog modela je ta da je na toj razini mreža dovoljno dobro naučena da obični linearni višeklasni klasifikator može razdvojiti primjere. To ne znači nužno da će u t-SNE vizualizaciji primjeri biti linearno odvojivi već kako se primjeri istih klasa nalaze na međusobno relativno bliskoj udaljenosti.

Na grafu 6.9 može se primijetiti kako su većinom primjeri dobro grupirani, a najviše odskaču primjeri za poluotvoren dlan što se i moglo pretpostaviti s obzirom kako je ona najlošije definirana klasa, kao nešto između otvorenog i zatvorenog dlana.

Pojava okluzije u dubinskoj slici oslabljuje kvalitetu detekcije malih površina te tako dlan postavljen u xz ravninu definiranog koordinatnog sustava zahtjevno je detektirati pa time i klasificirati. Ipak mreža je uspjela i takav problem riješiti te je zanimljivo promotriti t-SNE prikaz obojen po klasama orijentacije dlana (graf 6.10) gdje se vidi kako su primjeri horizontalno postavljenog dlana (zeleno) relativno udaljeni od primjera vertikalno postavljenog dlana te da se između njih nalaze klase dlana pod kutem od 45 i -45 stupnjeva u odnosu na horizontalu što može ukazati na to da je mreža naučila interpolirati između horizontalnog i vertikalnog dlana. Time je opravdano interpoliranje izlaza neuronske mreže kako je opisano u prethodnom odlomku (6.2.3).

Zanimljivo je pogledati i brojnost nakupina istovjetnih klasa na grafovima 6.10 i

Slika 6.9: Vizualizacija izlaza zadnjeg potpuno povezanog sloja neuronske mreže metodom t-SNE nad svim podacima za učenje grupiranih po označenoj otvorenosti.

Slika 6.10: Vizualizacija izlaza zadnjeg potpuno povezanog sloja neuronske mreže metodom t-SNE nad svim podacima za učenje grupiranih po označenom kutu dlana.

Slika 6.11: Vizualizacija izlaza zadnjeg potpuno povezanog sloja neuronske mreže metodom t-SNE nad svim podacima za učenje.

6.9, gdje u oba slučaja neke klase imaju više udaljenih nakupina iako pripadaju istoj klasi. Graf 6.11 kao kartezijev produkt oba elementa klasfikacije (otvorenost i orijentacija) može ponuditi objašnjenje tog naizgled problema. Naime, na izlazu mreže mogu se pojaviti 15 različitih slučajeva, koji su u grafu prikazani različitim bojama. Može se primijetiti kako primjeri istih elemenata kartezijevi produkta klasa zauzimaju puno kompaktinij prostor nego gledajući svaki element klasifikacije zasebno.

Ovakvom analizom može se zaključiti kako će se najveće greške prilikom klasifikacije dešavati u području horizontalnog dlana što i je bilo za očekivati s obzirom na lošu kvalitetu ulazne slike u takvim pozama zbog okluzija.

Neuronska mreža dobivena ovakvim postupkom sposobna je klasificirati 1200 slika u sekundi na gore navedenoj grafičkoj kartici, a 160 slika u sekundi na procesoru porodice *Intel Core i7*. U svakom slučaju, klasifikacija će i na slabijim današnjim procesorima raditi u stvarnom vremenu, što je i bio cilj.

7. Upravljački algoritam

Ovo poglavlje pomoću koncepata i metoda objašnjenih u prethodnim poglavljima detaljno prikazuje arhitekturu upravljačkog dijela sustava. U odlomku 7.1 opisuju se koraci potrebni za inicijalizaciju sustava te detalji sklopovskih sučelja, glavnog čvora i kinematičkih izračuna. Odlomak 7.2 sadrži opis simulacijskih ispitivanja odrađenih na sustavu i njihove rezultate. Rezultate zatim komentiramo i objašnjavamo njihov odraz na stvarni sustav.

Slika 7.1: Upravljačka shema

Na slici 7.1 prikazana je detaljna shema sustava u programskoj izvedbi. Iscrtkani pravokutnik predstavlja granicu između uređaja i računala dok bijeli i sivi predstavljaju područje sustava unutar ROS, odnosno ros_control arhitekture, respektivno.

7.1. Arhitektura upravljačke petlje

Ulazni signal u sustav dolazi iz detekcijskog algoritma u obliku ROS poruke geometry_msgs/Transform. Kako bi se ostvarila mogućnost udaljenog upravljanja, detekcijski dio ostvaruje se kao zasebni ROS čvor koji frekvencijom 30 Hz objavljuje poruke na temu camera_goal. Ovime se omogućuje pokretanje detekcijskog algoritma na zasebnom računalu, uz uvjet da je na istoj mreži kao ostatak ROS čvorova.

Glavni čvor svaku novu poruku na camera_goal čita i obrađuje. Početnoj poziciji korisnikova dlana (pri prvoj detekciji) pridružuje se željena pozicija manipulatora jednaka početnoj. Pomak dlana od početne pozicije primljen u poruci sustav zbraja s početnom pozicijom manipulatora koja je ranije spremljena, čime se dobiva nova željenu poziciju manipulatora. Trenutna pozicija manipulatora potom je oduzeta od željene, čime se dobiva nama bitna potrebna translacija manipulatora. Zbog ograničenja pri detekciji orijentacije dlana, trenutna orijentacija (klasificirana u diskretne slučajeve) direktno se prenosi u željenu orijentaciju manipulatora.

Algorithm 2 Računanje potrebne promjene vektora konf	iguracije

Ulaz: P – odmak dlana od početne pozicije R – diskretna orijentacija M – početni vektor konfiguracije manipulatora T – trenutni vektor konfiguracije manipulatora. Izlaz: E – potrebna promjena vektora konfiguracije. for (i := 0; i < 6; i + +) do if (i < 3) then $nova_i := M_i + P_i$ end if if (i >= 3) then $nova_i := M_i + R_i$ end if $E_i = nova_i - T_i$ end for

Vektor E_i predstavlja vektor razlike konfiguracija i koristi se u daljnjim koracima algoritma, koji se ovisno o dostupnim naredbama konfiguriraju u dva različita oblika. S dostupnom API funkcijom zadavanja Kartezijske brzine izvršnog člana, zaobilazimo kinematičke algoritme i narebu nakon skaliranja šaljemo direktno. Ako je dostupno postavljanje brzine zglobova, koristi se puna izvedba sustava.

7.1.1. Inicijalizacija sustava

Prvi korak pri inicijalizaciji sustava sastoji se od pokretanja sklopovskih sučelja. Samo sučelje jest programska rutina ostvarena tako da se API funkcije manipulatora "umotava" u hardware_interface klasu koja je dio ros_control paketa. Pri pokretanju cjelokupnog sustava, sučelje se pokreće prvo i čini granicu između općenitih algoritama i naredbi koje direktno pokreću manipulator. Moguće je ostvariti više vrsta sučelja te se u nastavku obrađuju dva slučaja.

Sučelje brzine izvršnog člana

U slučaju dostupnosti sklopovskog sučelja koje dopušta direktno postavljanje kartezijske brzine, algoritam se znatno pojednostavljuje. Na ovaj način izbjegava se složen kinematički račun iz poglavlja 5.1, te se oslanja na interne algoritme samog manipulatora.

Pri primanju poruke tipa camera_goal sa detekcijskog servera, funkcija sendCartesianCommand unutar glavnog čvora obrađuje podatke. Vektor razlike konfiguracija sklairamo za neki iznos α , ali daljnju regulaciju ostavljamo upravljačkom algoritmu samog manipulatora. Ovo znači da ros_control u ovom obliku koristimo isključivo za prosljeđivanje naredbi te čitanje stanja zglobova. Po završetku obrade, Kartezijska naredba šalje se u obliku poruke na temu cartesian_goal, koja je rezervirana za referentnu veličinu kretanja manipulatora. Naredba vezana uz izvršni član sprema se u poruku te šalje na temu cartesian_goal_grip, koja je rezervirana za referentnu veličinu operacije izvršnog člana te ima vlastiti regulator.

Pokazalo se da je ovaj pristup optimalan za brzi početak korištenja jer visoka radna frekvencija najčešće znači da se parametar α može postaviti proizvoljno, dok ostalu regulaciju provodi API.

Sučelje brzine/pozicije zglobova

Nakon inicijalizacije, ovo sučelje registrira pojedinačne zglobove i "spaja" se na naredbe pisanja i čitanja stanja zglobova. Ovo spajanje vrši se tako da se spomenuti API naredbe umataju u funkcije čiji su pokazivači dostupni odgovarajućim ros_control regulatorima. Važno je spomenuti da svaki regulator ima odgovarajuću podvrstu hardware_interface klase i neće se spajati na neodgovarajuća sučelja.

Sljedeći korak je inicijalizacija sučelja, pokreće se regulator tipa velocity_ controllers/JointGroupVelocityController. Regulator svoje parametre učitava iz odgovarajuće konfiguracijske YAML¹ datoteke. U parametre između ostalog ubrajamo imena robota i zglobova, tip sučelja, pojačanja P, I i D komponenti, vremenska ograničenja na izvršenje naredbi, ograničenja zglobova i frekvenciju. Pokretanjem regulatora, API naredbe manipulatora postavljaju se kao mrežni resursi unutar ROS "grafa", čime ovaj dio sustava postaje potpuno fizički odvojiv od ostatka. Svi podaci sa senzora postaju dostupni na temi joint_states, a postavljanje referentne veličine vrši se slanjem odgovarajuće poruke na temu camera_goal, a parametri regulatora također su dostupni.

7.1.2. Glavni čvor

Inicijalizacijom glavnog čvora dovršava se pokretanje sustava. Dok ros_control regulator osigurava stabilnu brzinu, glavni čvor čini nadređenu regulacijsku petlju koja osigurava odgovarajuću referentnu veličinu baziranu na razlici željenog i trenutnog vektora konfiguracija. Kako bismo riješili problem kinematike opisan u poglavlju 5.1, pomoću metoda dostupnih u KDL bibliotekama učitavamo opis kinematičkog lanca iz .urdf datoteke. Iz učitanog se lanca pomoću funkcija u klasi Kinematics generira matrica direktne kinematike i Jakobijan sustava. Nakon toga poziva se funkcija unutar Kinematics klase koja korištenjem vektor razlike konfiguracija vrši metodu prigušenih najmanjih kvadrata prema 5.27. Parametar λ postavlja se dinamički unutar glavnog čvora i u startu je postavljen na 0. Konačno, inicijaliziraju se odgovarajući ROS pretplatnici i izdavači te sustav postaje spreman za uporabu.

Sada pri primanju nove naredbe iz detektora sustav obrađuje ulazne podatke kao što je opisano na početku poglavlja. Dobiveni vektor razlike konfiguracije se pomoću funkcija Kinematics klase pretvara u vektor pogreške pozicije zglobova. Pogreške pozicija zglobova tretiraju se kao željene brzine zglobova, ali ih je prvo potrebno skalirati s obzirom na maksimalnu dozvoljenu brzinu. Ograničenja brzina upisana su u YAML datoteku koja se učitava pri pokretanju regulatora te ih ros_control stavlja na mrežne lokacije koje glavni čvor čita i sprema u varijable. Brzine je vrlo bitno skalirati na način kojim se zadržava njihov omjer, stoga prvo pronalazimo brzinu koja najviše prelazi ograničenje te sve brzine skaliramo prema njoj.

¹YAML (engl. YAML Ain't Markup Language) - www.yaml.org

Algorithm 3 Skaliranje brzina

```
Ulaz: V – brzine bez ograničenja, O – ograničenja brzine.

Izlaz: Vs – skalirane brzine.

m := 0

for (i := 0; i < broj zglobova; i + +) do

if |V_i| > O_i \& ||V_i - O_i|| > m) then

m := ||V_i - O_i||

i_m := i

end if

end for

s = O_{i_m}/V_{i_m}

for (i := 0; i < broj zglobova; i + +) do

Vs_i := V_i * s

end for
```

Visoka vrijednost akceleracije zglobova može uzrokovati oscilacije u kretanju pri određenim položajima. Akceleracije ograničavamo skaliranjem, na sličan način kao kod brzina. Pri ograničavanju potrebno je voditi računa o frekvenciji glavnog čvora jer se brzine osvježavaju 50 puta u sekundi te se male razlike pri svakom taktu mogu pretvoriti u veliku razliku.

Algorithm 4 Skaliranje brzina s obzirom na akceleraciju

Ulaz: V – brzine bez ograničenja, Vt – trenutna brzina, A – ograničenja akceleracije.

```
Izlaz: Vs – skalirane brzine.

m := 0

for (i := 0; i < brojzglobova; i + +) do

if ||V_i - Vt_i|| > A_i \& ||V_i - Vt_i|| > m) then

m := ||V_i - Vt_i||

i_m = i

end if

end for

s = A_{i_m}/m

for (i := 0; i < brojzglobova; i + +) do

Vs_i := V_i * s

end for
```

Nakon ovih skaliranja referentna brzina spremna je za slanje na temu koju čita regulator brzine zglobova. U slučaju sučelja pozicije zglobova ovu veličinu možemo smatrati pomakom te je dodati trenutnim vrijednostima zakreta zglobova kako bismo dobili željenu poziciju. Vrijednosti vezane uz izvršni član neovisne su o sučelju i šalju se direktno.

7.1.3. Kinematika

Kao što je ranije spomenuto, sve funkcije vezane uz kinematičke kalkulacije sadržane su u Kinematics klasi. Biblioteka KDL koristi se za generiranje matrice Jakobijana i izvođenje množenja prema izrazu 5.27. Kako bi se ostavio prostor za kvalitetnijeg nasljednika ili moguće vlastite implementacije naprednijih metoda, kinematika je odvojena u diskretnu komponentu sustava.

Pri inicijalizaciji klase unutar glavnog čvora prvo je potrebno konstruirati kinematički lanac od semantičkog opisa sadržanog u URDF datoteci. Čitanje se obavlja tako da pri pokretanju sustava datoteku učitavamo u ROS parametar robot_description, koji klasa pri inicijalizaciji dohvaća i sprema kao varijablu tipa string. Ovaj opis zatim parsiramo pomoću KDL funkcije treeFromString koja od opisa generira kinematičko stablo tipa Tree. Kinematički lanac koji opisuje manipulator iz stabla dohvaćamo pomoću funkcije getChain i spremamo u varijablu tipa Chain.

Pomću kinematičkog lanca inicijalizira se kalsa ChainFkSolverPos_recursive, koja iz zakreta zglobova pomoću funkcije JntToCart daje vektor konfiguracije izvršnog člana u koordinatnom sustavu baze. Za kalkulacije potrebnih brzina zglobova inicijalizira se klasa ChainIkSolverVel_wdls. Pri pozivu funkcije CartToJnt generira Jakobijan te računa izraz 5.27. Funkcija getFK sadrži proceduru za rješavanje direktne kinematike, dok getIKvel sadrži račun vezan uz dobivanje potrebnih pomaka zglobova.

Poznavajući programsku izvedbu metode 5.27 iz vlastitog rješenja u Matlabu, ovu metodu lako možemo ostvariti i bez vanjskih biblioteka. Unatoč tome, u radu su se koristile KDL biblioteke radi već riješenih tehničkih problema kao što su upravljanje memorijom i optimiranje performansi. Sustav mora vršiti izračune relativno visokom frekvencijom i stoga bilo kakvo *curenje* memorije ili suvišno trošenje resursa može ostaviti trag na performansama.

7.2. Simuliranje sustava

Ispravnost sustava bilo je potrebno testirati na simulaciji kako pri stvarnoj primjeni ne bi došlo do oštećenja korištenog manipulatora. Za postizanje simulacije manipulatora korišten je Gazebo programski paket.

Kao što je prije spomenuto, Gazebo ima ugrađenu kompatibilnost sa ros_control paketom te nudi opciju stvaranja "lažnog" sklopovskog sučelja za simulaciju. Velika prednost Gazeba leži upravo u navedenoj kompatibilnosti jer pri simuliranju možemo koristiti identičan kod kao i za stvarni manipulator. Ovakvim pristupom znatno smanjujemo vrijeme potrebno za testiranje jer uočene probleme ne moramo popravljati na dvije različite varijante koda.

Simuliramo Jaco robotsku ruku, čija URDF datoteka sadrži i definirana sučelja zglobova te 3d modele koje korespondiraju pojedinim člancima. Ovakve opise možemo pronaći za većinu komercijalnih manipulatora, stoga je testiranje na isti način moguće vršiti i na drugim modelima. U simulaciju također uključujemo dinamičko ponašanje ruke jer opisna datoteka također sadrži tenzore inercije pojedinih članaka. Pri pokretanju, Gazebo automatski generira sklopovsko sučelje prema podacima iz opisa i inicijalizira regulator. Za inicijalizaciju sustava koristimo iste korake kao i prije, pri tome isključujući korak inicijalizacije sklopovskog sučelja za stvarni manipulator.

Testiranje se provodi zadavanjemkružne, isključivo translacijske putanje koje manipulator treba periodički izvoditi. Prva putanja prostire se samo u yz-ravnini te bi se u idealnom slučaju trebalo događati samo dvodimenzionalno kretanje. Na slici 7.2

Slika 7.2: Prikaz zadane putanje u *yz*-ravnini (crveno) i njene izvedbe (plavo). **Lijevo**: prikaz u *xz*-ravnini, **Desno**: prikaz u *yz*-ravnini.

primjećuje se kako za planarno gibanje model ima naočigled zadovoljavajuće prefor-

manse. Prikaz u xz-ravnini otkriva kako ostvarujemo skoro savršeno kružnu putanju. Greška u stacionarnom stanju uzrokovana je relativno malim promjerom kruga čija zakrivljenost zahtijeva veliku brzinu sustizanja reference. Na prikazu gibanja u yz-ravnini vidljiva su odstupanja reda veličine manjeg od milimetra. Ona ne predstavljaju problem jer industrijski precizno kretanje nije ciljana karakteristika našeg sustava. Pos-

Slika 7.3: Prikaz zadane putanje u *xz*-ravnini (crveno) i njene izvedbe (plavo). Lijevo: prikaz u *xz*-ravnini, **Desno**: prikaz u *yz*-ravnini.

tavljamo krug duž xz-ravnine i zabilježavamo rezultate na slici 7.3. Rezultati su slični kao i kod slučaja sa slike 7.2 te su pogreške u praćenju zanemarive kada uzmemo u obzir zamišljene aplikacije sustava. U praksi zadana putanja nikada neće biti planarna, stoga zadajemo putanju u obliku kružnice postavljene dijagonalno u prostoru.

Slika 7.4: Prikaz zadane prostorne putanje (crveno) i njene izvedbe (plavo) u Kartezijevom koordinatnom sustavu.

Putanja sa slike 7.4 zahtjeva kretanje po sve 3 osi i predstavlja izazov za stabilnost algoritma. Iz rezultata možemo zaključiti kako je u općem slučaju pri translacijskom

gibanju po neprekinutoj krivulji kinematičko rješenje zadovoljavajuće. Potrebno je uzeti u obzir da je kružna putanja najpogodnija za izvedbu manipulatorima, dok će u praksi putanje često sadržavati nagle promjene smjera.

Pravokutne ili isprekidane putanje mogu predstavljati izazov jer savršeno pravocrtno gibanje manipulatora u praksi nije moguće. U većini slučajeva linearne se putanje uspješno izvode s određenom pogreškom pri nagloj promjeni smjera. Na slici 7.5 lijevo primjećujemo kako je pravokutno gibanje ostvareno s pogreškom pri skretanju reda veličine milimetra. Ovo je očekivano višestruko veća pogreška od one dobivene gibanjem po kružnici, ali i dalje potpuno prihvatljiva s obzirom na primjenu.

Slika 7.5: Prikaz izvedbe iste putanje s dvije različite početne konfiguracije. Gornji red sadrži željenu (crveno) i izvedenu (plavo) putanju . Donji red sadrži prikaz početne konfiguracije putanje iznad.

Na slici 7.5 desno vidimo izvođenje iste putanje pri drugačijoj početnoj konfiguraciji manipulatora. Rezultat je očito drastično lošiji jer se na dijelu putanje pojavljuju značajne oscilacije koje uzrokuju oscilatorno gibanje i pogrešku u praćenju. Ovo je posljedica činjenice da manipulatori imaju tzv. singularne konfiguracije u kojima Jacobijeva matrica manipulatora nije regularna te se efektivno gubi stupanj slobode. U ovakvim konfiguracijama male kartezijske promjene zahtijevaju neizvedivo brze rotacije zglobova, čime sustav postaje nestabilan.

Metoda provođenja kinematičkog računa unutar KDL biblioteka "ublažava" singularitete tako da sprječava ulazak vrijednosti u beskonačnost te osigurava kontinuiran rad sustava. Veličinu λ u idealnom slučaju potrebno je birati dinamički, dajući joj vrijednost različitu od 0 blizu singulariteta. Pronalazak svih singularnih konfiguracija u slučaju metode prigušenih najmanjih kvadrata zahtijeva pronalaženje svih zakreta zglobova koji zadovoljavaju identitet 7.1:

$$\det \left(\mathbf{J}^{\dagger} \mathbf{J} + \lambda^2 \mathbf{I} \right) = 0 \tag{7.1}$$

Iako pronalaženje svih jedinstvenih rješenja ovog identiteta programski nije pretjerano složeno, izbjegavanje ovakvih konfiguracija složeniji je problem. Potrebno je izvesti algoritam zaobilaženja kritičnih konfiguracije (u općem slučaju) na način da se ne gubi smjer kretanja. Za sada ograničavanjem akceleracije i brzine sprječavamo oscilatorno ponašanje te postavljanjem vrijednosti λ izbjegavamo "zaglavljenje" sustava u singularitetu.

8. Rezultati

Ukupna izvedba upravljačkog sučelja temeljito je testirana u nekoliko faza. Prvo je bilo potrebno potvrditi da se upravljačka petlja ponaša na odgovarajući način pri praćenju putanja zadanih RGB-Dubinskom kamerom. Ovo se provjerava simuliranjem cjelokupnog sustava unutar Gazebo okruženja, što možemo bez dodatnih modifikacija zahvaljujući ros_control paketu. Potvrdom pouzdanosti sustava, započinje se testiranje na pravoj Jaco robotskoj ruci. Tesiranje na stvarnoj robotskoj ruci prvo se provodi praćenjem fiksnih periodičnih trajektorija, a zatim se prelazi na putanje zadane RGB-Dubinskom kamerom. Konačno, ispituje se korisnost sustava u usporedbi sa konvencionalnim načinom upravljanja robotskom rukom tako da se korisnicima bez prijašnjeg iskustva zadaje zadatak koji moraju obaviti koristeći obje metode.

8.1. Praćenje putanje u simulaciji

Unatoč tome što je u poglavlju 7 dokazana kinematička stabilnost izvođenja putanje, provjerava se robusnost sustava pri kretanju ruke korisnika. Glavni razlog za ovakvo ispitivanje jest nepredvidivost utjecaja stvarne dinamike elektromotora na korištene algoritme.

Slika 8.1: Prikaz putanje zadane RGB-Dubinskom kamerom (crveno) i njene izvedbe u simulaciji (plavo).

Na slici 8.1 prikazan je rezultat simulacije upravljanja. Primjećujemo kako je stvarna putanja puno glađa od one zadane, što je rezultat ograničavanja brzine i akceleracije kretanja zglobova kao i tromosti samog manipulatora. Pri izvođenju je zamjećeno povremeno zastajkivanje ili zaobilaženje područja radi ograničenja zakreta zglobova ili približavanja sustava singularitetu. Ovu situacija izbjegnuta je dinamičkim postavljanjem parametra λ na vrijednost 0.02 ako se u trenutnom ciklusu dogodi ograničavanje akceleracije. Nagli skokovi u brzini jedan su od indikatora da bi konfiguracija mogla biti blizu singulariteta te ovom jednostavnom metodom izbjegavamo većinu zaglavljenja.

Rotaciju detektiranu RGB-Dubinskom kamerom prenosimo u obliku skalara raspona 0 do 1, gdje 0 označava ruku okrenutu prema tlu, a 1 ruku okrenutu prema gore. Ovaj se raspon zatim unutar upravljačkog algoritma skalira na željeni raspon kuteva. Tijekom testiranja primjećeno je da se najbolji rezulati dobivaju skaliranjem ove vrijednosti na valjanje alata u rasponu od $[-45^\circ, 45^\circ]$.

Slika 8.2: Prikaz naredbe orijentacije zadane RGB-Dubinskom kamerom te odziva simulacije.

Slika 8.2 prikazuje kretanje vrijednosti osi rotacije u baznom koordinatnom sustavu s obzirom na zadanu naredbu rotacije. Zadana mjera rotacije vezana je uz odgovarajuću os na alatu manipulatora, y. Na slici je vidljivo kako se projekcija osi y na bazni koordinatni sustav najmanje mijenja s promjenama naredbe, što je očekivano jer se oko nje vrši rotacija. Male promjene u projekciji osi y uzrokovane su pomicanjem ruke korisnika pri okretanju dlana.

Provjera ponašanja samog sustava u simulaciji pokazala je kako je sustav robustan na promjene reference te otvara mogućnost primjene na stvarnom manipulatoru.

8.2. Praćenje putanje Jaco robotske ruke

Sustav ima sve potrebne predispozicije za primjenu na stvarnom manipulatoru te se započinje testiranje na Jaco robotskoj ruci. Prvi korak sastoji se od ispitivanja praćenja jednostavnih periodičkih trajektorija u obliku pravokutnika i elipse.

Slika 8.3: Prikaz zadanih trajektorija (crveno) i njihove izvedbe Jaco robotskom rukom (plavo).

Rezultati prikazani na slici 8.3 pokazuju kvalitetno praćenje trajektorije. Pri izvođenju pravokutne trajektorije primjećujemo zakrivljenje na kutevima karakteristično za izvođenje pravokutnih putanja, ovo ponašanje opisano je u 7.2 i očekivano. Praćenje eliptične putanje vrlo je precizno te ima pogrešku reda veličine manjeg od milimetra. Manjak glatkoće u izvedenoj trajektoriji uzrokovan je nelinearnim karakteristikama aktuatora pri niskim brzinama potrebnim da se kompenziraju mala odstupanja od željene konfiguracije. Ovaj problem nestaje pri višim brzinama karakterističnim za kretanje ljudske ruke, stoga rezultat uzimamo kao izrazito pozitivan.

Upravljačko sučelje sada se može ispitati u potpunosti sa svim komponentama na stvarnoj Jaco robotskoj ruci. Kutne brzine aktuatora (zglobova) ograničavaju se na 2.5 rad/s, dok akceleracije i ograničenja zakreta ostaju na tvornički postavljenim vrijed-nostima. Otvaranje i zatvaranje šake korisnika vežu se uz otvaranje i zatvaranje "šake" robotske ruke. Zatvaranje "šake" robotske ruke odrađuje podređena petlja s povratnom vezom po sili, gdje se pri velikim protusilama stiskanje šake zaustavlja kako bi se izvršini član zaštitio od oštećenja. Upravljačko sučelje prvo se ispituje pri situacijama gdje korisnik miče i rotira ruku bez posebnog cilja, istražujući radni prostor robotske ruke. Nakon toga ispituju se situacije gdje je korisniku zadan konkretan zadatak kao što je podizanje objekta ili stavljanje objekta u spremnik. Pri tome je bitno napomenuti kako je radni prostor robotske ruke u oba eksperimenta ograničen po z osi, kako ne bi došlo do udaranja u podlogu pri ispitivanju.

Slika 8.4: Prikaz putanje zadane RGB-Dubinskom kamerom (crveno) i njene izvedbe Jaco robotskom rukom (plavo) u xy, yz i xz ravninama te u prostoru.

Slika 8.5: Prikaz putanje zadane RGB-Dubinskom kamerom (crveno) i njene izvedbe Jaco robotskom rukom (plavo) u xy, yz i xz ravninama, te u prostoru.

Rezultati prvog seta situacija koji uključuje isključivo kretanje bez konkretnih zadataka vidljivi su na grafovima 8.4 i 8.5. Uočljivo je kako linije na ove dvije skupine grafova indiciraju različite karaktere kretanja ruke korisnika. Ovakva dva primjera namjerno su izdvojena kako bismo mogli prokomentirati ponašanje cjelokupnog sustava u pri različitim tipovima kretanja.

Slika 8.4 prikazuje brzo kretanje ruke korisnika pri čemu Jaco robotska ruka ne može dostići željenu konfiguraciju na vrijeme. Na izraženim krivuljama vidljivo je kako u pri ovakvom kretanju putanja samog manipulatora zadržava oblik putanje korisnikove ruke. Naša metoda upravljanja zahvaljujući strukturi upravljačke petlje (7.1) mijenja ciljanu konfiguraciju svakom iteracijom, čime se ostvaruje djelovanje u stvarnom vremenu. Potpuno praćenje putanje stavljanjem naredbi na stog uzrokovalo bi značajno kašnjnje manipulatora za korisnikom, kao i moguća zaglavljenja i oscilacije. Kašnjenje u upravljanju jedan je od glavnih faktora kod intuitivnosti i stoga ocjenjujemo ovakav pristup kao boljim od alternative.

Na slici 8.5 prikazano je kretanje nešto drugačijeg karaktera gdje korisnik zadržava ruku na određenim točkama. Lokacije na slici sa većom koncentracijom crvenih točaka nastaju kada korisnik zaustavi kretanje ruke te translacijska naredba daje približno iste vrijednosti. Ovakvo kretanje događa se pri manipulaciji objektima jer korisnik na oređenim točkama objekt hvata ili mijenja orijentaciju kao na slici 8.6. Na prikazu u xy-ravnini moguće je primijetiti odstupanja od pravocrtnog gibanja u točkama gdje se događa naredba promjene orijentacije, tada se pozicija alata mijenja u vremenu potrebnom za izvršenje naredbe. Pri sporijem kretanju moguće je ostvariti potpuno praćenje putanje ruke.

Slika 8.6: Prikaz upravljanja orijentacijom izvršnog člana.

Kao vizualna povratna veza korisniku je dostupno grafičko sučelje prikazano na slici 8.7. Na sučelju su prikazane obična i dubinska snimka, kao i superponirana informacija o detektiranom dlanu i otvorenosti. Ove informacije korisne su za praćenje putanje koja se zadaje manipulatoru.

Slika 8.7: Grafičko sučelje na računalu.

Iz gornjih grafova (kao i iz vlastitog iskustva pri korištenju) zaključujemo da sustav ostvaruje kvalitetno vladanje. Pri tome je praktično ograničiti kretanje manipulatora tako da se uvijek nalazi izvan "cilindra" radijusa 5-10 cm formiranog oko njegove baze kako bi se izbjegla većina singulariteta koji smanjuju kvalitetu gibanja. Uz ova saznanja moguće je testirati sustav izvršavajući konkretne zadatke kao što su podizanje i spuštanje objekta te spremanje objekta u spremink. Pri ovim zadacima prikazanim na slikama 8.8 i 8.9 upravljačko sučelje pokazalo se vrlo intuitivnim. Rezultati ovih testiranja dostupni su u obliku video zapisa na ovom linku¹.

Izvršni član Jaco robotske ruke ima samo tri prsta, te je zadatke potrebno ograničiti na klasu predmeta veličine veće od teniske loptice. Značajna prednost našeg upravljač-kog sučelja primjećena je pri hvatanju objekata, gdje je vrijeme vršenja radnje skraćeno radi intuitivnosti kontrole prilaženja objektu. Otvorena je i mogućnost prikaza stanja robotske ruke i njene ciljane pozicije na 3d modelima, čime korisnik dobiva bolji uvid pri finijim kretnjama.

Moguće poboljšanje u budućim implementacijama nalazi se u kontroli samog grabljenja i ispuštanja objekta. Trenutno se nakon prilaženja objektu on mora postaviti između prstiju izvršnog člana, što čini korisnik. Ovaj dio radnje zauzima većinu upravljačkog vremena te se može olakšati implementacijom autonomnog hvatanja koristeći kameru u grabilici kao povratnu vezu. Na ovaj način vrijeme upravljanja za hvatanje svelo bi se na red veličine nekoliko sekundi.

¹https://youtu.be/exf7TUviuSg

Slika 8.8: Uspješna manipulacija objektom u prvom ispitnom scenariju.

Slika 8.9: Uspješna manipulacija objektom u drugom ispitnom scenariju.

8.3. Ispitivanje

Ispitivanje je provedeno uz pomoć 7 kolega studenata Sveučilišta u Zagrebu. Cilj ispitivanja bilo je istražiti zahtjevnost uporabe razvijenog sustava upravljanja robotskom rukom. Ispitivanjem među kolegama s drugih fakulteta pokušano je postići bolji dojam o lakoći upravljanja kod pojedinaca koji se prethodno nisu susreli s korištenjem uređaja tog tipa. Studenti su morali izvršiti dva jednostavna zadatka. Podizanje objekta te stavljanja objekta u spremnik pomoću robotske ruke (što je opisano u prethodnom odjeljku 8.2). Pri tome su zadatke morali izvršiti na dva načina. Pomoću upravljačke palice koja je sastavni dio opreme koja dolazi uz robotsku ruku te pomoću našeg sustava.

Mjerena je brzina izvođenja zadataka prilikom prvog susreta s robotskom rukom te nakon 15 minuta upoznavanja s načinima upravljanja. Htjelo se usporediti vrijeme potrebno za savladavanje oba sustava upravljanja. Prilikom mjerenja od 7 kandidata odbačeni su rezultati najboljih te najgorih, a od ostatka je izračunata aritmetička sredina.

 Tablica 8.1: Rezultati ispitivanja premještanja objekta igraćom palicom te razvijenim sustavom, trajanje akcija u minutama

	Upravljačka palica	Razvijeni sustav
Prvi susret	4:12	1:16
Nakon 15 minuta	2:11	0:31

Dobiveni rezultati (tablica 8.1) upućuju na to kako je nakon 15 minuta intenzivnog korištenja upravljanje pomoću igraće palice skoro dvostruko sporije nego pri prvom susretu s upravljanjem razvijenim sustavom. Također, korištenje razvijenog sustava ubrzava upravljanje robotom čak 4 puta u usporedbi s upravljanjem igraćom palicom.

Valja napomenuti i kako su se studenti doimali vidno sigurniji u upravljanju pokretima vlastite ruke no robotskima, ali da su i u nekim trenucima počeli očekivati i previše od sustava, kao na primjer pokušati pomaknuti robotsku ruku u smjeru gdje ona fizički nije u mogućnosti doći.

Ispitano je i mišljenje studenata te je traženo da subjektivno ocjene iskustvo upravljanja na skali od 1 do 10 pri čemu su u obzir morali uzeti: jednostavnost korištenja, spretnost u izvođenju pokreta, te opći osjećaj zadovoljstva tokom izvođenja zadatka. Pri korištenju upravljačke palice studenti navode da "nisu imali u potpunosti osjećaj kontrole nad robotskom rukom", te da su "neki aspekti u radu upravljačke palice kontraintuitivni što izaziva osjećaj nesigurnosti". Traženo je da subjektivno ocjene iskustvo u radu s igraćom palicom na skali od 1 do 10 pri čemu su u obzir morali uzeti: jednostavnost korištenja, spretnost u izvođenju pokreta, te opći osjećaj zadovoljstva tokom izvođenja zadatka. Dobivena je prosječna ocjena 5.9/10. Prilikom korištenja razvijenog sustava ispitivanjem subjektivnog mišljena saznalo se da je studentima "značajno lakše upravljati rukom na ovaj način". Po istim kriterijima traženo je da ocjene iskustvo u ovom načinu rada. Dobivena je prosječna ocjena 8.1/10.

9. Zaključak

Sustav zamišljen kao intuitivnija alternativa konvencionalnim načinima upravljanja ostvaren je u potpunosti koristeći metode neovisne o konkretnoj sklopovskoj implementaciji. Ovakvim pristupom prikazano je moguće rješenje problema ovakvog tipa upravljačkog sučelja u općem slučaju.

Problem kinematike detaljno je obrađen kako bi se prikazale prepreke na koje se nailazi pri poopćenju. Inverzna kinematika riješena je iterativnom metodom primjenjivom za velik broj manipulatora. Pritom su se uzimale u obzir numeričke karakteristike rješenja te ograničenja matematičkog modela. Matematički model zatim je uspješno testiran i pri tome je objašnjena potreba za primjenom numerički robusnijeg algoritma, koji je i ostvaren.

Detekciju pozicije i orijentacije ljudskog dlana također ostvarujemo na dva načina. Prvi je način računalno vrlo učinkovit no ostavlja prostora za razvoj radi nemogućnosti pronalaženja orijentacije ruke korisnika. Drugi, napredniji algoritam koristi više procesorskog vremena kako bi detektirao orijentaciju dlana korisnika korištenjem konvolucijske neuronske mreže. Također, ostvarena je detekcija otvorenosti ljudske šake koju koristimo kao dodatnu informaciju za upravljanje.

Konačno, ova dva algoritma ujedinjena su u upravljačku strukturu više razine baziranu na ROS arhitekturi. Prednost razvijene arhitekture leži u univerzalnosti sučelja te vrlo jednostavnoj prenamjeni. Cjelokupna upravljačka arhitektura ispitana je u Gazebo programskom sučelju i zaključeno je kako su rezultati zadovoljavajući za primjenu.

Upravljačko sučelje se u uporabi ponaša intuitivno, te su u jednostavnim zadacima postignute performanse bolje od konvencionalnog sučelja. Podizanje i spuštanje predmeta pokazalo se kao posebno prikladan zadatak jer odgovara anatomiji odabranog manipulatora, no promjenom izvršnog člana moguće je pronaći druge prikladne primjene. Zaključujemo kako ovakvo upravljačko sučelje zbog svoje izrazito ljudske karakteristike sigurno ima budućnost u robotičkim primjenama.

10. Zahvala

Zahvaljujemo se prof. dr. sc Ivanu Petroviću i prof. dr. sc. Zoranu Kalafatiću na ukazanom povjerenju. Posebno se zahvaljujemo dr. sc. Ivanu Markoviću na podršci i savjetovanju.

LITERATURA

- [1] Adi Ben-Israel i Thomas NE Greville. *Generalized inverses: theory and applications*, svezak 15. Springer Science & Business Media, 2003.
- [2] Weihong Bi, Hongmin Ren, i Qingbiao Wu. Three-step iterative methods with eighth-order convergence for solving nonlinear equations. *Journal of Computational and Applied Mathematics*, 225(1):105–112, 2009.
- [3] Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. *Mathematics of computation*, 19(92):577–593, 1965.
- [4] Samuel R Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. *IEEE Journal of Robotics and Automation*, 17(1-19):16, 2004.
- [5] Samuel R Buss i Jin-Su Kim. Selectively damped least squares for inverse kinematics. *journal of graphics, gpu, and game tools*, 10(3):37–49, 2005.
- [6] Martin de La Gorce, David J Fleet, i Nikos Paragios. Model-based 3d hand pose estimation from monocular video. *Pattern Analysis and Machine Intelligence*, *IEEE Transactions on*, 33(9):1793–1805, 2011.
- [7] Keith Grochow, Steven L Martin, Aaron Hertzmann, i Zoran Popović. Stylebased inverse kinematics. U *ACM transactions on graphics (TOG)*, svezak 23, stranice 522–531. ACM, 2004.
- [8] Charles A Klein i Ching-Hsiang Huang. Review of pseudoinverse control for use with kinematically redundant manipulators. *Systems, Man and Cybernetics, IEEE Transactions on*, 2:245–250, 1983.
- [9] Wiley J Larson i Linda K Pranke. *Human spaceflight: mission analysis and design.* McGraw-Hill Companies, 1999.
- [10] Microsoft. Kinect for xbox 360. http://www.xbox.com/en-US/ xbox-360/accessories/kinect, 2015. pristupljeno 9.6.2015.
- [11] OpenKinect. Imaging information. http://openkinect.org/wiki/ Imaging_Information, 2013. pristupljeno 8.6.2015.
- [12] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, i Jian Sun. Realtime and robust hand tracking from depth. U *Computer Vision and Pattern Recognition (CVPR)*, 2014 IEEE Conference on, stranice 1106–1113. IEEE, 2014.
- [13] James M Rehg i Takeo Kanade. Visual tracking of high dof articulated structures: an application to human hand tracking. U *Computer Vision—ECCV'94*, stranice 35–46. Springer, 1994.
- [14] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew Blake, Mat Cook, i Richard Moore. Real-time human pose recognition in parts from single depth images. *Communications of the ACM*, 56(1):116–124, 2013.
- [15] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, i Giuseppe Oriolo. *Robotics: modelling, planning and control.* Springer Science & Business Media, 2010.
- [16] Bjoern Stenger, Paulo RS Mendonça, i Roberto Cipolla. Model-based 3d tracking of an articulated hand. U *Computer Vision and Pattern Recognition, 2001. CVPR* 2001. Proceedings of the 2001 IEEE Computer Society Conference on, svezak 2, stranice II–310. IEEE, 2001.
- [17] Jonathan Tompson, Murphy Stein, Yann Lecun, i Ken Perlin. Real-time continuous pose recovery of human hands using convolutional networks. ACM Transactions on Graphics (TOG), 33(5):169, 2014.
- [18] JJ Uicker, J Denavit, i RS Hartenberg. An iterative method for the displacement analysis of spatial mechanisms. *Journal of Applied Mechanics*, 31(2):309–314, 1964.
- [19] Laurens van der Maaten i Geoffrey Hinton. Visualizing data using t-sne. *The Journal of Machine Learning Research*, 9(2579-2605):85, 2008.
- [20] Marin Šarić. Libhand: A library for hand articulation. http://www.libhand.org/, 2011. Version 0.9.

- [21] Li-Chun Tommy Wang i Chih Cheng Chen. A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. *Robotics* and Automation, IEEE Transactions on, 7(4):489–499, 1991.
- [22] Chi Xu i Li Cheng. Efficient hand pose estimation from a single depth image. U Computer Vision (ICCV), 2013 IEEE International Conference on, stranice 3456–3462. IEEE, 2013.
- [23] Kazuya Yoshida. Achievements in space robotics. *IEEE Robot. Automat. Mag.*, 16(4):20–28, 2009.

POPIS SLIKA

Blok dijagram izvedbe sustava	5
RGB-Dubinska kamera Kinect for Xbox 360	7
a) Okluzija u dubinskoj slici. b) Gubitak malih objekata	8
Kinova Jaco robotska ruka	9
a) aktuator K-75+ b) aktuator K-58	10
ROS logotip	13
Čvor A i čvor B ostvaruju jednosmjernu komunikaciju koristeći topic	14
Mathworks Matlab logo	16
OpenCV logo	16
OpenKinect logo	17
Gazebo logo	18
Model Jaco robotske ruke sa označenim parametrima	19
Model Jaco robotske ruke sa označenim parametrima korištenim pri	
sintezi DH parametara	20
Blok dijagram izvedbe upravljačke petlje manipulatora	27
Promjena pozicije inverzom Jakobijana. Slika a) (lijevo) sadrži trans-	
lacijski odziv, b) (desno) sadrži odziv orijentacije sustava u Eulerovim	
kutevima.	29
Promjena orijentacije inverzom Jakobijana. Slika a) (lijevo) sadrži	
translacijski odziv, b) (desno) sadrži odziv orijentacije sustava u Eule-	
rovim kutevima.	29
Promjena orijentacije metodom prigušenih najmanjih kvadrata. Slika	
a) (lijevo) sadrži translacijski odziv, b) (desno) sadrži odziv orijentacije	
sustava u Eulerovim kutevima.	30
	Blok dijagram izvedbe sustava RGB-Dubinska kamera Kinect for Xbox 360 a) Okluzija u dubinskoj slici. b) Gubitak malih objekata. Kinova Jaco robotska ruka a) aktuator K-75+ b) aktuator K-58 ROS logotip Čvor A i čvor B ostvaruju jednosmjernu komunikaciju koristeći topic Mathworks Matlab logo OpenCV logo OpenKinect logo Gazebo logo Model Jaco robotske ruke sa označenim parametrima Model Jaco robotske ruke sa označenim parametrima korištenim pri sintezi DH parametara Blok dijagram izvedbe upravljačke petlje manipulatora Promjena pozicije inverzom Jakobijana. Slika a) (lijevo) sadrži translacijski odziv, b) (desno) sadrži odziv orijentacije sustava u Eulerovim kutevima. Promjena orijentacije metodom prigušenih najmanjih kvadrata. Slika a) (lijevo) sadrži translacijski odziv, b) (desno) sadrži odziv orijentacije sustava u Eulerovim kutevima.

5.7.	Promjena vektora konfiguraciije metodom prigušenih najmanjih kva-	
	drata. Slika a) (lijevo) sadrži translacijski odziv, b) (desno) sadrži odziv	
	orijentacije sustava predstavljene u Eulerovim kutevima.	30
6.1.	Uspješno izoliranje dlana na slici. Slika (a) (lijevo gore) predstavlja	
	izoliranje uspravnog dlana, slika (b) (desno gore) izoliranje dorzalne	
	strane dlana, slika (c) (lijevo dolje) izoliranje dlana u vodoravnoj rav-	
	nini, slika (d) (desno dolje) izoliranje šake	34
6.2.	Prihvatljivo izoliranje dlana na slici. Slika (a) (lijevo) predstavlja izos-	
	tavljanje karpalnog predjela dlana, slika (b) (desno) zahvaćena podlaktica	34
6.3.	Pogrešna izolacija dlana, zahvaćen i dio podlaktice	35
6.4.	Segmentacija slike na osnovu praga, lijevo ulazna dubinska slika i	
	desno generirana maska	36
6.5.	Morfološka transformacija binarne slike operacijom zatvaranja, s li-	
	jeva na desno ulazna slika, međukorak te slika nakon transfomracije	37
6.6.	Obujmica i kontura ruke na slici	37
6.7.	Skup za učenje (crveno - slike zatvorenih dlanova, zeleno - slike otvo-	
	renih dlanova)	40
6.8.	Neki od prikupljenih označenih podataka	43
6.9.	Vizualizacija izlaza zadnjeg potpuno povezanog sloja neuronske mreže	
	metodom t-SNE nad svim podacima za učenje grupiranih po označenoj	
	otvorenosti.	46
6.10.	Vizualizacija izlaza zadnjeg potpuno povezanog sloja neuronske mreže	
	metodom t-SNE nad svim podacima za učenje grupiranih po označe-	
	nom kutu dlana	46
6.11.	Vizualizacija izlaza zadnjeg potpuno povezanog sloja neuronske mreže	
	metodom t-SNE nad svim podacima za učenje.	47
7.1.	Upravljačka shema	48
7.2.	Prikaz zadane putanje u yz-ravnini (crveno) i njene izvedbe (plavo).	
	Lijevo : prikaz u <i>xz</i> -ravnini, Desno : prikaz u <i>yz</i> -ravnini	54
7.3.	Prikaz zadane putanje u xz-ravnini (crveno) i njene izvedbe (plavo).	
	Lijevo : prikaz u <i>xz</i> -ravnini, Desno : prikaz u <i>yz</i> -ravnini	55
7.4.	Prikaz zadane prostorne putanje (crveno) i njene izvedbe (plavo) u Kar-	
	tezijevom koordinatnom sustavu.	55

7.5.	Prikaz izvedbe iste putanje s dvije različite početne konfiguracije. Gor-	
	nji red sadrži željenu (crveno) i izvedenu (plavo) putanju . Donji red	
	sadrži prikaz početne konfiguracije putanje iznad	56
8.1.	Prikaz putanje zadane RGB-Dubinskom kamerom (crveno) i njene iz-	
	vedbe u simulaciji (plavo).	58
8.2.	Prikaz naredbe orijentacije zadane RGB-Dubinskom kamerom te od-	
	ziva simulacije.	59
8.3.	Prikaz zadanih trajektorija (crveno) i njihove izvedbe Jaco robotskom	
	rukom (plavo)	60
8.4.	Prikaz putanje zadane RGB-Dubinskom kamerom (crveno) i njene iz-	
	vedbe Jaco robotskom rukom (plavo) u xy, yz i xz ravninama te u	
	prostoru	61
8.5.	Prikaz putanje zadane RGB-Dubinskom kamerom (crveno) i njene iz-	
	vedbe Jaco robotskom rukom (plavo) u xy, yz i xz ravninama, te u	
	prostoru	61
8.6.	Prikaz upravljanja orijentacijom izvršnog člana.	62
8.7.	Grafičko sučelje na računalu.	63
8.8.	Uspješna manipulacija objektom u prvom ispitnom scenariju.	64
8.9.	Uspješna manipulacija objektom u drugom ispitnom scenariju.	64

POPIS TABLICA

3.1.	Prikaz tehničkih specifikacija Jaco robotske ruke	10
3.2.	Prikaz tehničkih specifikacija aktuatora K-75+	11
3.3.	Prikaz tehničkih specifikacija manjih aktuatora	11
3.4.	Prikaz tehničkih specifikacija aktuatora prstiju	11
5.1.	Konstrukcijski parametri Jaco robotske ruke	21
5.2.	DH parametri	22
6.1.	Rezultati ispitivanja klasifikacije otvorenog dlana u pojedinoj slici	41
6.2.	Rezultati ispitivanja klasifikacije zatvorenog dlana u pojedinoj slici	41
6.3.	Rezultati ispitivanja klasifikacije otvorenog dlana u slijednim slikama	41
6.4.	Rezultati ispitivanja klasifikacije zatvorenog dlana u slijednim slikama	41
6.5.	Prikaz točnosti naučene konvolucijske mreže	45
8.1.	Rezultati ispitivanja premještanja objekta igraćom palicom te razvije-	
	nim sustavom, trajanje akcija u minutama	65

DODATAK A

```
ı syms C1 C2 C3 C4 C5 C6 S1 S2 S3 S4 S5 S6 d1 a2 d3 d4 d5 d6 q1 ...
      q2 q3 q4 q5 q6 dx dy dz wx wy wz J
2 Sal = 0.8192;
_{3} Cal = 0.5736;
4 digits(5);
5
6 %Simbolicke matrice transformacije
7 T01=[C1 0 S1 0; S1 0 -C1 0; 0 1 0 d1; 0 0 0 1];
8 T12=[C2 S2 0 a2*C2; S2 -C2 0 a2*S2; 0 0 -1 0; 0 0 0 1];
9 T23=[C3 0 S3 0; S3 0 -C3 0; 0 1 0 d3; 0 0 0 1];
10 T34 =[C4 -Cal*S4 Sal*S4 0; S4 Cal*C4 -Sal*C4 0; 0 Sal Cal ...
      d4; 0 0 0 1];
II T45 =[C5 -Cal*S5 Sal*S5 0; S5 Cal*C5 -Sal*C5 0; 0 Sal Cal ...
      d5; 0 0 0 1];
12 T56 = [C6 S6 0 0; S6 - C6 0 0; 0 0 - 1 d6; 0 0 0 1];
13
14 %Simbolicke matrice transformacije kao funkcije zakreta zglobova
15 T01 = subs(T01,[C1 S1],[cos(q1) sin(q1)]);
16 T12 = subs(T12, [C2 S2], [cos(q2) sin(q2)]);
17 T23 = subs(T23,[C3 S3],[cos(q3) sin(q3)]);
18 T34 = subs(T34, [C4 S4], [cos(q4) sin(q4)]);
19 T45 = subs(T45,[C5 S5],[cos(q5) sin(q5)]);
20 T56 = subs(T56, [C6 S6], [cos(q6) sin(q6)]);
21
22 %Matrice transformacije koristene u sintezi matrice Jakobijana
23 T02 = T01 * T12;
24 T03 = T02 * T23;
25 \text{ T04} = \text{T03} \times \text{T34};
_{26} T05 = T04 * T45;
27 T06 = T05 * T56;
28
29 %Sinteza matrice Jakobijana
```

```
30 R01 = T01(1:3, 1:3);
R02 = T02(1:3,1:3);
_{32} R03 = T03(1:3,1:3);
R04 = T04(1:3,1:3);
_{34} R05 = T05(1:3,1:3);
35 \text{ R06} = \text{T06}(1:3, 1:3);
36
37 \quad 001 = T01(1:3,4);
38 \quad 002 = T02(1:3,4);
39 \quad 003 = T03(1:3,4);
40 \quad 004 = T04(1:3,4);
41 \quad 005 = T05(1:3, 4);
42 \quad 006 = T06(1:3, 4);
43
  z0 = [0; 0; 1];
44
45 z1 = R01 * [0; 0; 1];
46 \ z2 = R02 \star [0; 0; 1];
  z3 = R03 * [0; 0; 1];
47
48 \quad z4 = R04 \star [0; 0; 1];
  z5 = R05 \star [0; 0; 1];
49
50
  %Rotacijski dio matrice Jakobijana
51
  Jw = [z0 z1 z2 z3 z4 z5];
52
53
54 Jv1=cross(z0, 006);
55 Jv2=cross(z1, 006 - 001);
56 Jv3=cross(z2, 006 - 002);
57 Jv4=cross(z3, 006 - 003);
58 Jv5=cross(z4, 006 - 004);
59 Jv6=cross(z5, 006 - 005);
60
  %Translacijski dio matrice Jakobijana
61
   Jv = [Jv1 Jv2 Jv3 Jv4 Jv5 Jv6];
62
63
  %Matrica Jakobijana kao funkcija zakreta zglobova
64
  J = vpa(subs([Jv;Jw], [ d1 a2 d3 d4 d5 d6],[0.2755 0.41 ...
65
      -0.0098 -0.249182 -0.08376448 -0.21058224]));
```

Sažetak

U ovom radu razvijena je metoda upravljanja robotskim manipulatorom baziranu na imitiranju pokreta ljudske ruke. Pokrete i lokacija ruke korisnika detektirana je koristeći 3-d kameru i vlastite algoritme bazirane na strojnom učenju. Algoritam za detekciju dlana razvijen je za uporabu u stvarnom vremenu i postižemo dvije efikasne varijante. Sustav je zamišljen kao univerzalan i modularan, što ga čini primjenjivim na velikom broju manipulatora uz minimalne modifikacije. Pretpostavljen je manipulator bez ugrađenih naprednih kinematičkih funkcija, te se istražuje problematika rješavanja kinematike manipulatora u općem slučaju. Dobiveni sustav upravljanja prvo se ispituje na simulaciji Jaco robotske ruke, a potom i na stvarnoj robotskoj ruci iste vrste. Rezultati se izlažu u obliku slika, grafova i videozapisa. Komentira se intuitivnost sustava i kvaliteta praćenja korisnikovih kretnji.

Ključne riječi: robotika, RGB-Dubinska kamera, upravljanje, ROS, detekcija

SUMMARY

In this paper we present a method of controlling robotic manipulators based on mirroring movement of the human hand. Movement and location of the arm are detected using a 3-d camera and internally developed algorithms based on machine learning. The proposed method is developed as universal and modular, allowing use on a large number of robotic manipulators. We assume a manipulator without provided advanced kinematics functions and research methods of solving manipulator kinematics in the general case. The resulting control system is then tested on a simulation of the Jaco robotic arm and subsequently on the real Jaco arm itself. Results presented in the form of pictures, graphs and video are analysed for quality of control and simplicity of use.

Keywords: robotics, RGB-D camera, control, ROS, detection