SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Marko Fadljević

UTJECAJ DEBLJINE PLOČE NA VRIJEDNOSTI FAKTORA INTENZIVNOSTI NAPREZANJA DUŽ 3-D RAVNE FRONTE PUKOTINE

Zagreb, 2009.

Ovaj rad izrađen je na Fakultetu strojarstva i brodogradnje u Zavodu za zrakoplovstvo pod vodstvom prof. dr. sc. Željka Božića i predan je na natječaj za dodjelu Rektorove nagrade u akademskoj godini 2008. / 2009.

POPIS I OBJAŠNJENJE KRATICA

а	polovična duljina pukotine
Δa	prirast duljine pukotine
В	debljina uzorka ili modela ploče
dB	debljina singularnog elementa
E	Youngov modul elastičnosti
G	modul smicanja
н	visina uzorka ili modela ploče
К	faktor intenzivnosti naprezanja
Kı	faktor intenzivnosti naprezanja za prvi način otvaranja pukotine
KII	faktor intenzivnosti naprezanja za drugi način otvaranja pukotine
K _{III}	faktor intenzivnosti naprezanja za treći način otvaranja pukotine
K _{Ic}	kritičan faktor intenzivnosti naprezanja za prvi način otvaranja pukotine
Ν	funkcija oblika
r, θ	koordinate u cilindričnom koordinatnom sustavu
r _p	radijus plastične zone na vrhu pukotine
u, v, w	pomaci u x, y i z smjeru u pravokutnom koordinatnom sustavu
W	širina uzorka ili modela ploče
x, y, z	koordinate u pravokutnom koordinatnom sustavu
β	faktor geometrijske korekcije kod faktora intenzivnosti naprezanja
γ	kutna deformacija
3	deformacija
К	konverzijski faktor između ravninskog stanja deformacija i ravninskog
	stanja naprezanja
ν	Poissonov koeficijent
σ	naprezanje
σ_{ys},σ_t	naprezanje tečenja
τ	smično naprezanje

SADRŽAJ RADA

POPIS I OBJAŠNJENJE KRATICA I
SADRŽAJ RADA II
POPIS SLIKA III
POPIS TABLICAV
1. UVOD 1
2. OSNOVNI POJMOVI MEHANIKE LOMA I DEFINICIJA PROBLEMA
2.1 Raspodjela deformacija i naprezanja u okolici vrha pukotine
2.2 Ravninsko stanje naprezanja i ravninsko stanje deformacija 6
2.3 Raspodjela vrijednosti faktora intenzivnosti naprezanja po fronti pukotine kod ploče sa središnjom pukotinom kroz čitavu debljinu ploče
3. NUMERIČKI MODEL 11
3.1 Singularni elementi 11
3.2 Utvrđivanje faktora intenzivnosti naprezanja 13
3.3 Model ploče sa središnjom pukotinom kroz čitavu debljinu ploče
4. REZULTATI I RASPRAVA 23
4.1 Rezultati
4.2 Rasprava 42
5. ZAKLJUČAK 45
ZAHVALA
POPIS LITERATURE
SAŽETAK
SUMMARY

POPIS SLIKA

Slika 2.1-1	Tri načina otvaranja pukotine	. 3
Slika 2.1-2	Pukotina u beskonačnoj ploči	. 4
Slika 2.1-3	Raspodjela naprezanja σ_y u okolici vrha pukotine – linearno-	
	elastični slučaj	. 4
Slika 2.1-4	Zona plastičnosti na vrhu pukotine, a) pretpostavljena raspodjela	
	naprezanja, b) približna raspodjela naprezanja	. 5
Slika 2.2-1	3-D zona plastičnosti	. 7
Slika 2.2-2	Veličina plastične zone i stanje naprezanja, a) plastična zona reda	I
	veličine debljine ploče, b) mala zona plastičnosti, c) srednja	
	veličina	. 7
Slika 2.3-1	Shema pukotine koja se proteže kroz čitavu debljinu ploče s lagan	0
	zakrivljenom frontom	10
Slika 3.1-1	2-D singularni elementi	11
Slika 3.1-2	3-D singularni elementi	12
Slika 3.2-1	Lokalni koordinatni sustav iz a) 2-D vrha pukotine, b) 3-D fronte	
	pukotine	13
Slika 3.2-2	Čvorovi za procjenu pomaka vrha pukotine	16
Slika 3.3-1	Geometrija ploče sa središnjom pukotinom podvrgnute vlačnom	
	opterećenju σ	18
Slika 3.3-2	1/4 geometrije modela ploče sa središnjom pukotinom ravne	
	fronte	19
Slika 3.3-3	Model konačnih elemenata (1/4 geometrije ploče)	20
Slika 3.3-4	Veličina singularnih elemenata u modelu ploče	21
Slika 3.3-5	Geometrijske dimenzije singularnog elementa u modelu ploče	21
Slika 3.3-6	Rubni uvjeti i opterećenje na modelu konačnih elemenata (1/4	
	geometrije ploče)	22
Slika 4.1-1	Raspored σ_y naprezanja na deformiranom modelu konačnih	
	elemenata (1/4 geometrije ploče)	23
Slika 4.1-2	Raspored von Mises naprezanja na deformiranom modelu konačn	ih
	elemenata (1/4 geometrije ploče)	24
Slika 4.1-3	Raspored K _I po duljini fronte pukotine (B = 0.5 mm)	25
Slika 4.1-4	Raspored β po duljini fronte pukotine (B = 0.5 mm)	26

Slika 4.1-5	Raspored K_I po duljini fronte pukotine (B = 1 mm)	27
Slika 4.1-6	Raspored β po duljini fronte pukotine (B = 1 mm)	27
Slika 4.1-7	Raspored K _I po duljini fronte pukotine (B = 4 mm)	28
Slika 4.1-8	Raspored β po duljini fronte pukotine (B = 4 mm)	29
Slika 4.1-9	Raspored K _I po duljini fronte pukotine (B = 20 mm)	30
Slika 4.1-10	Raspored β po duljini fronte pukotine (B = 20 mm)	31
Slika 4.1-11	Raspored K _I po duljini fronte pukotine (B = 40 mm)	33
Slika 4.1-12	Raspored β po duljini fronte pukotine (B = 40 mm)	34
Slika 4.1-13	Raspored K _I po duljini fronte pukotine (B = 80 mm)	36
Slika 4.1-14	Raspored β po duljini fronte pukotine (B = 80 mm)	37
Slika 4.1-15	Raspored K _I po duljini fronte pukotine (B = 300 mm)	39
Slika 4.1-16	Raspored β po duljini fronte pukotine (B = 300 mm)	40
Slika 4.1-17	Raspored K ₁ po duljini fronte pukotine za različite debljine modela	
	ploče	41
Slika 4.1-18	Raspored β po duljini fronte pukotine za različite debljine modela	
	ploče	41

POPIS TABLICA

Tablica 3.3-1	Vrijednosti dimenzija ploče, konstanti materijala ploče i narinuto	bg
	opterećenja	. 18
Tablica 3.3-2	Broj elemenata u modelima ploča različitih debljina	. 20
Tablica 4.1-1	Prikaz vrijednosti K _I i β po duljini fronte pukotine (B = 0.5 mm)	
	(a/20 : dB = 4)	. 25
Tablica 4.1-2	Prikaz vrijednosti K _I i β po duljini fronte pukotine (B = 0.5 mm)	
	(a/20 : dB > 4)	. 25
Tablica 4.1-3	Prikaz vrijednosti K _I i β po duljini fronte pukotine (B = 1 mm)	
	(a/20 : dB = 4)	. 26
Tablica 4.1-4	Prikaz vrijednosti K _I i β po duljini fronte pukotine (B = 1 mm)	
	(a/20 : dB > 4)	. 26
Tablica 4.1-5	Prikaz vrijednosti K _I i β po duljini fronte pukotine (B = 4 mm)	. 28
Tablica 4.1-6	Prikaz vrijednosti K _I i β po duljini fronte pukotine (B = 20 mm)	. 29
Tablica 4.1-7	Prikaz vrijednosti K _I i β po duljini fronte pukotine (B = 40 mm)	. 31
Tablica 4.1-8	Prikaz vrijednosti K _I i β po duljini fronte pukotine (B = 80 mm)	. 34
Tablica 4.1-9	Prikaz vrijednosti K _I i β po duljini fronte pukotine (B = 300 mm)	. 37

1. UVOD

Dobro je poznato da je stanje deformacija blizu vrha pukotine, osim za iznimno tanke ploče, uvijek trodimenzionalno (3-D). Kao posljedica toga faktori intenzivnosti naprezanja duž fronte pukotine mogu imati promjenjive vrijednosti, odnosno osjetljivi su na sam oblik fronte pukotine. U literaturi se mogu naći rezultati utvrđivanja raspodjele naprezanja duž fronte pukotine kod ploče sa središnjom pukotinom, [1-6]. Na osnovi tih rezultata dolazi se do nekoliko zaključaka: stanje deformacija na fronti pukotine je ravninsko stanje deformacija osim na površini; faktor intenzivnosti naprezanja se mijenja po debljini ploče; granični sloj postoji u blizini vanjske površine ploče. Zbog složenosti stanja naprezanja na fronti pukotine postavlja se pitanje o valjanosti dvodimenzionalne (2-D) linearno-elastične mehanike loma kod ploča s pukotinom kroz čitavu debljinu ploče (engl. through thickness crack), koja omogućuje utvrđivanje vrijednosti fakora intenzivnosti naprezanja za dva granična stanja, tj. ravninsko stanje deformacija ili ravninsko stanje naprezanja.

Ovaj problem postaje osobito naglašen kod pukotina koje propagiraju uslijed cikličkih opterećenja, (engl. fatigue cracks). Iz brojnih se testova zamora vidi [7] da pukotina s početno ravnom frontom tijekom napredovanja poprima lagano zakrivljeni oblik, kao npr. kod uzoraka ploče sa središnjom pukotinom kroz čitavu debljinu ploče. Takva pojava da sredina fronte pukotine napreduje brže ili zaostaje za frontom pukotine na vanjskim površinama ploče naziva se tuneliranje (engl. tunneling) fronte pukotine. Leblond i suradnici [8] su istraživali moguće promjene ravne konfiguracije fronte pukotine u beskonačno elastičnom čvrstom tijelu korištenjem Riceove teorije o 3-D težinskoj funkciji [9]. Utvrdili su da vrijednosti faktora intenzivnosti naprezanja duž fronte pukotine imaju kostantan iznos za slučaj kad oblik fronte pukotine ima sinusoidalan oblik. Bakker [10] je predvidio relativnu dubinu tuneliranja od 2.5-3% na temelju konstantne raspodjele faktora intenzivnosti naprezanja korištenjem metode konačnih elemenata. Prema nekim eksperimentalnim istraživanjima [11], utvrđene dubine tuneliranja propagirajućih pukotina uslijed zamora općenito su veće od 5%, što upućuje na činjenicu da raspodjela faktora intenzivnosti naprezanja kod zamornih pukotina nije uvijek konstantna.

Vrijednosti faktora intenzivnosti naprezanja i njihova promjena po dužini fronte pukotne određuju životni vijek konstrukcije. Iz tog je razloga važno istražiti raspodjelu faktora intenzivnosti naprezanja po fronti pukotine za različite debljine ploča.

2. OSNOVNI POJMOVI MEHANIKE LOMA I DEFINICIJA PROBLEMA

2.1 Raspodjela deformacija i naprezanja u okolici vrha pukotine

"S makroskopskog stajališta, u čvrstom tijelu razlikuju se tri osnovna načina otvaranja pukotine (engl. mode), tj. oblika loma nastala djelovanjem naprezanja na fronti pukotine, kako je prikazano na slici 2.1-1

Slika 2.1-1 Tri načina otvaranja pukotine

Prvi način (engl. mode I) je način otvaranja uslijed vlačnih sila gdje se lica pukotine razdvajaju u smjeru normale na ravninu pukotine, drugi način (engl. mode II) je način otvaranja pukotine u ravnini smicanja u kojoj lica pukotine kližu u smjeru normale na frontu pukotine, a treći način (engl. mode III) je način otvaranja pukotine trganjem (ili anti-ravninski način smicanja) u kojemu su lica pukotine posmaknuta u smjeru paralenom s frontom pukotine." [12] Prvi način je tehnički najvažniji u strojarstvu dok su drugi i treći načini obično u sprezi s prvim načinom: daljnje rasprave u ovom radu odnosit će se samo na prvi način otvaranja pukotine.

"Slika 2.1-2 prikazuje prvi način otvaranja pukotine duljine 2a koja se proteže kroz čitavu debljinu ploče u beskonačnoj ploči. Ploča je podvrgnuta vlačnom naprezanju σ.

Element ploče dxdy na udaljenosti r od vrha pukotine i pod kutem θ na ravninu pukotine trpi normalna naprezanja σ_x i σ_y u X i Y smjerovima te smično naprezanje τ_{xy} . Ta se naprezanja mogu prikazati kao [14-17]:

$$\sigma_{x} = \sigma \sqrt{\frac{a}{2r}} \cos \frac{\Theta}{2} \left[1 - \sin \frac{\Theta}{2} \sin \frac{3\Theta}{2} \right]$$

$$\sigma_{y} = \sigma \sqrt{\frac{a}{2r}} \cos \frac{\Theta}{2} \left[1 + \sin \frac{\Theta}{2} \sin \frac{3\Theta}{2} \right]$$

$$\tau_{xy} = \sigma \sqrt{\frac{a}{2r}} \sin \frac{\Theta}{2} \cos \frac{\Theta}{2} \cos \frac{3\Theta}{2}$$

$$\sigma_{z} = 0 \quad (ravninsko \ st.naprezanja)$$

$$\sigma_{z} = v(\sigma_{x} + \sigma_{z}) \quad (ravninsko \ st.deformacija)$$
(2.1-1)

U uvjetima elastičnosti naprezanja su proporcionalna vanjskom naprezanju σ . Naprezanja se mijenjaju s kvadratnim korijenom od veličine pukotine i teže u beskonačnost na vrhu pukotine gdje je r malen. Raspodjela naprezanja σ_y kao funkcija r u θ = 0 prikazana je na slici 2.1-3.

Jednadžba (2.1-1) se može zapisati i u indeksnom obliku:

$$\sigma_{ij} = \frac{K_I}{\sqrt{2\pi r}} f_{ij}(0) \quad s \quad K_I = \sigma \sqrt{\pi a}$$
(2.1-2)

Faktor K_I je "faktor intenzivnosti naprezanja", gdje indeks I označava prvi način otvaranja pukotine. Kad je faktor intenzivnosti naprezanja poznat, poznato je cijelo polje naprezanja na vrhu pukotine. Dvije pukotine, jedna veličine 4a, a druga a imaju isto polje naprezanja na vrhu pukotine ako je prva pukotina opterećena sa σ , a druga s 2σ i tada je K_I jednak za obje pukotine.

Slika 2.1-4 Zona plastičnosti na vrhu pukotine, a) pretpostavljena raspodjela naprezanja, b) približna raspodjela naprezanja

Jednadžba (2.1-2) daje rješenje u uvjetima elastičnosti gdje naprezanja nisu ograničena da postanu beskonačna na vrhu pukotine što u stvarnosti nije moguće: plastična deformacija na vrhu pukotine čini naprezanja konačnim. Veličina plastične zone vrha pukotine određuje se preko udaljenosti r_p^* od vrha pukotine do koje je elastično naprezanje σ_y veće od naprezanja σ_{ys} tečenja. Zamjenom $\sigma_y = \sigma_{ys}$ u jednadžbi (2.1-1) za σ_y i za $\theta = 0$ slijedi:

$$\sigma_{y} = \frac{K_{I}}{\sqrt{2\pi r_{p}^{*}}} = \sigma_{ys} \quad ili \quad r_{p}^{*} = \frac{K_{I}^{2}}{2\pi\sigma_{ys}^{2}} = \frac{\sigma^{2}a}{2\sigma_{ys}^{2}}$$
(2.1-3)

U stvarnosti je plastična zona nešto veća (slika 2.1-4). Dovoljno je znati da se r^{*}_p može direktno izraziti kao funkcija faktora intenzivnosti naprezanja i naprezanja tečenja." [13]

2.2 Ravninsko stanje naprezanja i ravninsko stanje deformacija

Većina se klasičnih problema u mehanici loma reducira na problem u dvije dimenzije [18]. Odnosno, najmanje je jedno od osnovnih naprezanja (odnosno osnovnih deformacija) pretpostavljeno da je ograničeno, što dovodi do ravninskog stanja naprezanja (odnosno ravninskog stanja deformacija).

"Matematička definicija ravninskog stanja deformacija kroz deformirano tijelo glasi

$$u = u(x, y)$$

$$v = v(x, y)$$

$$w = 0(ili konst.)$$

$$(2.2-1)$$

Druga definicija ravninskog stanja deformacija jest

$$\begin{aligned} \varepsilon_{z} &= \frac{\partial w}{\partial z} = 0 \\ \gamma_{xz} &= \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} = 0 \\ \gamma_{yz} &= \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} = 0 \end{aligned}$$
(2.2-2)

Vidi se da jednadžba (2.2-2) slijedi direktno iz jednadžbe (2.2-1), tj. vrijedi i obrnuto. Prema Hookeovom zakonu vrijedi još jedna definicija ravninskog stanja deformacija

$$\sigma_{z} = \nu(\sigma_{x} + \sigma_{y})$$

$$\tau_{xz} = 0$$

$$\tau_{yz} = 0$$

$$(2.2-3)$$

l ovdje jednadžba (2.2-3) proizlazi iz jednadžbe (2.2-2).

Za razliku, ravninsko stanje naprezanja matematički se definira kao

$$\begin{aligned} \sigma_z &= 0 \\ \tau_{xz} &= 0 \\ \tau_{yz} &= 0 \end{aligned}$$
 (2.2-4)

I ovdje su, kao i ranije, mogući izvodi preko deformacija i pomaka no ti izvodi trenutno nisu nužni." [19]

"Kad unutar ploče ravninsko stanje deformacija i postoji, na površini je uvijek ravninsko stanje naprezanja. Naprezanja okomita na vanjsku površinu ne postoje pa je na površini $\sigma_z = \sigma_3 = 0$. Ako ravninsko stanje deformacija prevladava u unutrašnjosti ploče, naprezanje σ_3 postepeno raste od nule (na površini) do vrijednosti ravninskog stanja deformacija u unutrašnjosti. Posljedica toga je da se plastična zona postepeno smanjuje s veličine ravninskog stanja naprezanja na površini na vrijednost ravninskog stanja deformacija u unutrašnjosti ploče, što je prikazano na slici 2.2-1.

Slika 2.2-1 3-D zona plastičnosti

Stanje naprezanja utječe na veličinu plastične zone. Kad je plastična zona velika naspram debljine ploče, do popuštanja može slobodno doći u smjeru debljine ploče. To je prikazano na slici 2.2-2 a) gdje se vidi presjek zone plastičnosti kod punog ravninskog stanja naprezanja. Kad je plastična zona dosta malena može slobodno doći do popuštanja u smjeru debljine ploče: ε_z je nula zbog ograničenja od okolnog elastičnog materijala. To uzrokuje malu zonu plastičnosti kod ravninskog stanja deformacija. Velike zone plastičnosti podupiru postojanje ravninskog stanja naprezanja.

Slika 2.2-2 Veličina plastične zone i stanje naprezanja, a) plastična zona reda veličine debljine ploče, b) mala zona plastičnosti, c) srednja veličina

Omjer veličine plastične zone naspram debljine ploče važan je faktor kod ravninskog stanja naprezanja. Ako je veličina zone reda veličine debljine ploče. tj. ako se r_p/B približava jedinici onda se može razviti ravninsko stanje naprezanja. Omjer mora biti znatno manji od jedinice da bi ravninsko stanje deformacija moglo postojati u većem dijelu debljine ploče (područje ravninskog stanja naprezanja na površini trebalo bi biti na što manjem dijelu debljine ploče). Veličina plastične zone je proporcionalna s K_1^2/σ_{ys}^2 . Velika intenzivnost naprezanja i malo naprezanje tečenja djeluju na rast velike plastične zone. Zaključak je da je potrebna velika debljina za očuvanje dominantnog ravninskog stanja naprezanja kod materijala s malim naprezanjem tečenja i malom čvrstoćom. Zato su potrebne postupno deblje ploče za testove lomne žilavosti materijala s manjim σ_{ys} i većim K_{lc} ." [13]

2.3 Raspodjela vrijednosti faktora intenzivnosti naprezanja po fronti pukotine kod ploče sa središnjom pukotinom kroz čitavu debljinu ploče

Za ploču konačnih dimenzija sa središnjom pukotinom, faktor intenzivnosti naprezanja se može izračunati koristeći slijedeću jednadžbu [19, 20]

$$K = \sigma \sqrt{\pi a} \beta, \tag{2.3-1}$$

gdje je σ narinuto vlačno naprezanje, a je duljina polovice pukotine i β je korektivni geometrijski faktor. Kod pukotine koja prolazi kroz čitavu debljinu ploče s lagano zakrivljenom frontom, (slika 2.3-1), faktor intenzivnosti naprezanja može u pravilu varirati po debljini ploče. Vrijednost faktora intenzivnosti naprezanja ovisi o trenutnoj duljini pukotine koja se u eksperimentu obično mjeri na vanjskoj površini uzorka ploče. Izmjerena veličina na površini ploče može biti najkraća duljina pukotine, odnosno najduža duljina pukotine, ovisno o tome koji oblik fronta pukotine zauzme tijekom napredovanja pukotine. Oblik fronte pukotine se tijekom napredovanja pukotine može mijenjati ovisno o trenutnim vrijednostima faktora intenzivnosti naprezanja duž fronte pukotine, koji ovise o raspodjeli deformacija i naprezanja po fronti pukotine. U izračunavanju faktora intenzivnosti naprezanja koristi se gore navedeni izraz koji u pravilu može dati samo vrijednosti za dva krajnja slučaja raspodjele deformacija i naprezanja u okolici vrha pukotine, tj. za ravninsko stanje naprezanja ili ravninsko stanje deformacija. Prema tome, potrebno je objasniti značenje izračunatog faktora intenzivnosti naprezanja iz jednadžbe (2.3-1) i njegove veze s 3-D rješenjem, odnosno odrediti moguću grešku faktora intenzivnosti naprezanja zbog utjecaja tuneliranja fronte pukotine. Iz tog je razloga za točnije utvrđivanje životnog vijeka konstrukcija oštećenih pukotinama potrebno što točnije poznavati utjecaj debljine ploče kao i trenutne duljine pukotine na raspodjelu vrijednosti faktora intenzivnosti naprezanja duž fronte pukotine koje se mogu analizirati metodom konačnih elemenata.

Slika 2.3-1 Shema pukotine koja se proteže kroz čitavu debljinu ploče s lagano zakrivljenom frontom.

3. NUMERIČKI MODEL

3.1 Singularni elementi

"Najvažniji korak u modeliranju 2-D vrha pukotine ili 3-D fronte pukotine je odabir tipa konačnih elemenata koji će predstavljati područje koje okružuje pukotinu. Ako se koriste regularni (tj. nesingularni) elementi gdje su aproksimacije pomaka u svakom elementu u obliku polinoma onda je nivo konvergencije znatno usporen. Nadalje, nivo konvergencije u singularitetu se ne može povećati samo odabirom elemenata većeg reda polinoma. Zato se u većini slučajeva prednost daje singularnim elementima.

Dostupno je nekoliko vrsta ANSYS-ovih elemenata za modeliranje singularnog ponašanja u pukotini. U 2-D-u je, tj. kod ravninskog stanja deformacija, naprezanja ili osne simetrije, prikladno koristiti 8-čvorne ili 6-čvorne kvadratne izoparametarske elemente: npr,. STIF2, 82, 83 i 93. Prema slikama 3.1-1(a) i 3.1-1(b), poznati singularitet deformacije kvadratnog korijena u linearno-elastičnoj mehanici loma nastaje kad središnji čvorovi susjedni vrhu pukotine budu smješteni u točki na ¼ duljini stranice elementa od vrha pukotine. Tu su metodu uvođenja singularnog ponašanja u inače standardne elemente uveli Henshell i Shaw [22] te Barsoum [23].

Slika 3.1-1 2-D singularni elementi

U 3-D slučaju, slika 3.1-2 prikazuje 3-D elemente za modeliranje fronte pukotine. Za 20-čvorne heksaedre na slici 3.1-2(a), Barsoum [23] je pokazao da kad se središnji čvorovi pomaknu na točke udaljene ¼ duljine stranice elementa od vrha pukotine (čvorovi Q, T, U i X) potrebna singularnost kvadratnog korijena se postiže na stranicama elementa. Klinasti ili pentaedarski 3D element može se stvoriti iz reduciranog heksaedra, kako je prikazano na slici 3.1-2(b). Oba singularna elementa s frontom pukotine prikazana na slikama 3.1-2(a) i 3.1-2(b) mogu se dobiti iz ANSYS-ovog STIF95 (SOLID95) 3-D elementa." [21]

Slika 3.1-2 3-D singularni elementi

3.2 Utvrđivanje faktora intenzivnosti naprezanja

"Utvrđivanje faktora intenzivnosti naprezanja iz rezultata konačnih elemenata je najvažniji i osnovni je zadatak u numeričkoj mehanici loma. Na samom početku potrebno je u blizini vrha pukotine proučiti pomake i naprezanja u linearno-elastičnoj mehanici loma, koji se obično odnose na tri osnovna načina otvaranja pukotine kod loma (slika 2.1-1).

Izraženo u koordinatama vrha/fronte pukotine na slici 3.2-1,

Slika 3.2-1 Lokalni koordinatni sustav iz a) 2-D vrha pukotine, b) 3-D fronte pukotine

pomaci i naprezanja u blizini vrha/fronte pukotine izraženi su preko

$$u = \frac{K_{I}}{4G} \sqrt{\frac{r}{2\pi}} \left[(2\kappa - 1)\cos\frac{\theta}{2} - \cos\frac{3\theta}{2} \right] - \frac{K_{II}}{4G} \sqrt{\frac{r}{2\pi}} \left[(2\kappa - 3)\sin\frac{\theta}{2} + \sin\frac{3\theta}{2} \right] + O(r)$$

$$v = \frac{K_{I}}{4G} \sqrt{\frac{r}{2\pi}} \left[(2\kappa - 1)\sin\frac{\theta}{2} - \sin\frac{3\theta}{2} \right] - \frac{K_{II}}{4G} \sqrt{\frac{r}{2\pi}} \left[(2\kappa - 3)\cos\frac{\theta}{2} + \cos\frac{3\theta}{2} \right] + O(r) \quad (3.2-1)$$

$$w = \frac{2K_{III}}{G} \sqrt{\frac{r}{2\pi}} \sin\frac{\theta}{2} + O(r)$$

i

$$\sigma_{x} = \frac{K_{I}}{\sqrt{2\pi r}} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \right) \cos\frac{\theta}{2} - \frac{K_{II}}{\sqrt{2\pi r}} \left(2 + \cos\frac{\theta}{2}\cos\frac{3\theta}{2} \right) \sin\frac{\theta}{2} + O(1)$$

$$\sigma_{y} = \frac{K_{I}}{\sqrt{2\pi r}} \left(1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \right) \cos\frac{\theta}{2} + \frac{K_{II}}{\sqrt{2\pi r}} \sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2} + O(1)$$

$$\sigma_{z} = 0 \quad za \text{ uvjete ravninskog st. naprezanja}$$

$$= v(\sigma_{x} + \sigma_{y}) \quad za \text{ ravninsko st. deformacija}$$

$$\tau_{xy} = \frac{K_{I}}{\sqrt{2\pi r}} \sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2} + \frac{K_{II}}{\sqrt{2\pi r}} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \right) \cos\frac{\theta}{2} + O(1)$$
(3.2-2)

$$\tau_{xz} = \frac{K_{III}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} + O(1)$$

$$\tau_{yz} = \frac{K_{III}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} + O(1)$$

gdje su K_I, K_{II} i K_{III} faktori intenzivnosti naprezanja u linearno-elastičnoj mehanici loma; K_I se odnosi na oblik I, i tako dalje. Također, σ_x , σ_y , σ_z , σ_{xy} i σ_{yz} i σ_{xz} su komponente naprezanja u pravokutnom (x, y, z) koordinatnom sustavu prikazanom na slici 3.2-1; u, v i w su pomaci; r i θ su lokalne polarne koordinate; G je modul smicanja; i v je Poissonov koeficijent. Promjenjivi κ je konverzijski faktor između ravninskog stanja deformacija i ravninskog stanja naprezanja, gdje je

$$\kappa = 3 - 4v$$
 za ravninsko st. deformacija (3.2-3a)

$$=\frac{3-v}{1+v}$$
 za ravninsko st. naprezanja (3.2-3b)

Računanje K (tj. K_I, K_{II} i K_{III}) ovdje opisano, a izvedeno preko ANSYS-ove KCALC naredbe uspoređuje pomake čvorova iz analize konačnih elemenata s egzaktnim izrazom (3.2-1). Ovaj postupak ima prednost u činjenici da (3.2-1)

razdvaja u odvojene jednadžbe za svaki K na licima pukotine. Rješavanjem (3.2-1) na jednom od lica pukotine i zanemarivanjem članova višeg reda (dok r $\rightarrow \theta$) dolazi se do

$$u = \frac{K_{II}}{2G} \sqrt{\frac{r}{2\pi}} (1+\kappa)$$

$$v = \frac{K_{I}}{2G} \sqrt{\frac{r}{2\pi}} (1+\kappa)$$

$$w = \frac{2K_{III}}{G} \sqrt{\frac{r}{2\pi}}$$
(3.2-4)

gdje je samo apsolutna vrijednost uzeta u obzir.

Tako, za svako lice pukotine, sada postoji jedna jednadžba za svaki K. Pomaci punog otvaranja, smicanja i trganja preko lica pukotine dobiveni su računanjem (3.2-1) preko lica pukotine kako bi se dobili

$$\Delta u = \frac{K_{II}}{G} \sqrt{\frac{r}{2\pi}} (1+\kappa)$$

$$\Delta v = \frac{K_{I}}{G} \sqrt{\frac{r}{2\pi}} (1+\kappa)$$

$$\Delta w = \frac{4K_{II}}{G} \sqrt{\frac{r}{2\pi}}$$
(3.2-5)

U slijedećem se koraku uspoređuju rezultati konačnih elemenata s gornjim jednadžbama iz teorije i zatim izvodi K. Postupak računanja je jednak za K_I, K_{II} i K_{III}. Analiza konačnih elemenata obično se izvodi ili s cijelom ili s polovicom pukotine. Kako je prikazano na slici 3.2-2, model s cijelom pukotinom ima oba lica pukotine, dok polovični model koristi prednost simetrije (ili antisimetrije) rubnih uvjeta i ima samo jedno lice.

Slika 3.2-2 Čvorovi za procjenu pomaka vrha pukotine

U svakom slučaju potrebno je aproksimirati ponašanje ili v(r) u (3.2-4) ili $\Delta v(r)$ u (3.2-5). Na licu pukotine vrijedi

$$\hat{v}/\sqrt{r}$$
 ili $\Delta \hat{v}/\sqrt{r} = A + Br$ (3.2-6)

gdje v i Δv su aproksimacije pomaka lica pukotine, a A i B su konstante određene preko linearne krivulje koja odgovara pomacima čvorova. Slika 3.2-2 prikazuje da su tri čvora (I, J, K) potrebna kod modela s polovicom pukotine, a pet čvorova (I, J, K, L, M) kod modela cijele pukotine. Svi su pomaci relativni na čvor I vrha pukotine. Kad se A i B odrede, uzme se limes r \rightarrow 0 i odredi

$$\lim_{r \to 0} \frac{\hat{v}}{\sqrt{r}} \quad ili \quad \lim_{r \to 0} \Delta v / \sqrt{r} = A$$
(3.2-7)

Najprije rješavanjem (3.2-4), a zatim (3.2-5) za K_I te kombiniranjem s (3.2-7) dobiva se

$$K_I = \frac{2G\sqrt{2\pi}A}{(1+\kappa)}$$
 za model s polovicom pukotine (3.2-8a)

$$K_I = \frac{G\sqrt{2\pi}A}{(1+\kappa)}$$
 za model s cijelom pukotinom (3.2-8b)

Kao što je ranije bilo navedeno, sva tri faktora intenzivnosti naprezanja računaju se preko jednadžbi (3.2-4) do (3.2-8)." [20]

3.3 Model ploče sa središnjom pukotinom kroz čitavu debljinu ploče

Slika 3.3-1 prikazuje model ploče visine H, širine W i debljine B sa središnjom pukotinom duljine 2a pod vlačnim opterećenjem σ. Pretpostavlja se da je materijal ploče homogen i izotropan. U tablici 3.3-1 dane su vrijednosti dimenzija ploče, karakterističnih konstanti materijala ploče i narinutog opterećenja.

Slika 3.3-1 Geometrija ploče sa središnjom pukotinom podvrgnute vlačnom opterećenju

σ

Tablica 3.3-1Vrijednosti dimenzija ploče, konstanti materijala ploče i narinutogopterećenja

Visina ploče, H	600 mm
Širina ploče, W	240 mm
Debljina ploče, B	0.5 mm, 1 mm, 4 mm, 20 mm, 40 mm, 80 mm, 300 mm
Duljina pukotine, 2a	40 mm
Youngov modul elastičnosti, E	206 GPa
Poissonov koeficijent, v	0.3
Vlačno opterećenje, σ	80 MPa

Geometrija modela i opterećenje su takvi da je jedino moguć prvi način otvaranja pukotine pa je potrebno odrediti samo K_I duž fronte pukotine, odnosno po debljini ploče B. Zbog postojanja ravnina simetrije geometrije modela i simetrije opterećenja moguće je modelirati za analizu konačnih elemenata samo 1/8 modela ploče sa središnjom pukotinom, čime se pojednostavljuje izrada modela i bitno smanjuje vrijeme numeričke analize. Ipak, radi budućih ispitivanja gdje će se uvesti utjecaj savijanja ploče na raspored K_I duž fronte pukotine kod kojih se očekuje nesimetrična raspodjela K_I duž fronte pukotine [7] nije uzeta u obzir simetrija u odnosu na os okomitu na prednju površinu ploče, odnosno modelirana je 1/4 ploče, slika 3.3-2.

Slika 3.3-2 1/4 geometrije modela ploče sa središnjom pukotinom ravne fronte

Modeli konačnih elemenata napravljeni su u programskom paketu ANSYS 11.0 korištenjem SOLID95 20-čvornih heksaedarskih elemenata te singularnih elemenata duž fronte pukotine koji imaju središnje čvorove pomaknute na ¹/₄ duljinu od vrha pukotine (vidi poglavlje 3.1), slika 3.3-3.

Slika 3.3-3 Model konačnih elemenata (1/4 geometrije ploče)

Broj elemenata u modelima ploča različitih debljina prikazan je u tablici 3.3-2.

Debljina modela ploče, B	0.5 mm		1 r	nm	4 mm	20 mm	40 mm	80 mm	300 mm
Broj elemenata	1072 ¹	3216 ²	2144 ³	3216 ⁴	8576	13585	27315	27315	27315

Tablica 3.3-2 Broj elemenata u modelima ploča različitih debljina

Kod pukotina s ravnom frontom međusobni omjer duljina stranica singularnih elemenata ne bi smio biti veći od 4/1 te bi stranice elementa trebale biti ravne. U protivnom bi se narušila njihova karakteristika singularnosti [21]. U danim

¹ Model ploče s dva elementa po duljini fronte pukotine

² Model ploče sa šest elementa po duljini fronte pukotine

³ Model ploče sa četiri elementa po duljini fronte pukotine

⁴ Model ploče sa šest elementa po duljini fronte pukotine

modelima ploče duljina stranice singularnih elementa u smjeru osi x iznosi a/20, slika 3.3-4 (preporučena duljina je od a/4 do a/20, [20]),

Slika 3.3-4 Veličina singularnih elemenata u modelu ploče

a stranica singularnih elemenata dB u smjeru osi z (slika 3.3-5) je duljine:

$$dB = \frac{a/20}{4}$$
(3.3-1)

kako bi se obuhvatila čim veća raspodjela K_I po fronti pukotine, odnosno po debljini ploče B, a istodobno zadržao preporučeni omjer duljina stranica singularnog elementa.

Slika 3.3-5 Geometrijske dimenzije singularnog elementa u modelu ploče

U danom slučaju, kod modela ploča s debljinama B većim od 20 mm, dB više nije jednak jednadžbi (3.3-1) nego je veći no nikad ne prelazi omjer duljina stranica veći od 4/1. To je učinjeno zbog toga da se smanji potrebno vrijeme računanja u simulaciji jer se kod modela ploče s povećanjem debljine ploče B bitno povećava i broj elemenata, tablica 3.3-2.

Na slici 3.3-6 prikazani su i objašnjeni rubni uvjeti i naprezanja koji vrijede na modelu ¼ geometrije ploče sa središnjom pukotinom.

Slika 3.3-6 Rubni uvjeti i opterećenje na modelu konačnih elemenata (1/4 geometrije ploče)

4. REZULTATI I RASPRAVA

4.1 Rezultati

Koristeći model ploče sa središnjom pukotinom kroz čitavu debljinu ploče kako je prikazano na slici 3.3-6 izvršena je statička analiza metodom konačnih elemenata te su utvrđeni iznosi faktora intenzivnosti naprezanja po fronti pukotine za različite debljine ploča. Razmatrane debljine ploče su B = 0.5 mm, B = 1 mm, B = 4 mm, B = 20 mm, B = 40 mm, B = 80 mm i B = 300 mm.

Raspodjela von Mises i σ_y naprezanja na primjeru ploče debljine B = 20 mm dana je na slikama. Slika 4.1-1 prikazuje raspodjelu σ_y naprezanja, a slika 4.1-2 von Misesovih naprezanja. Jasno se vidi da je površina lica pukotine slobodna od σ_y naprezanja (slika 4.4-1) i da su naprezanja najveća duž fronte pukotine.

Slika 4.1-1 Raspored σ_y naprezanja na deformiranom modelu konačnih elemenata (1/4 geometrije ploče)

Slika 4.1-2 Raspored von Mises naprezanja na deformiranom modelu konačnih elemenata (1/4 geometrije ploče)

Metodom konačnih elemenata utvrđene su vrijednosti faktora intenzivnosti naprezanja K_I i korektivnog geometrijskog faktora β po debljini ploče Z, (tablice 4.1-1 - 9, slike 4.1-3 - 16). Ovdje je faktor β definiran kao $\beta = \frac{K_I}{\sigma \sqrt{\pi a}}$.

Model ploče debljine stranice B = 0.5 mm

	Z [mm]	K _l [MPa(m) ^{1/2}]	β [-]
1	0,000	22,24131	1,10912
2	0,250	21,98499	1,09634
3	0,500	22,24132	1,10913

Tablica 4.1-1	Prikaz vrijednosti K, i ß	bo duliir	ni fronte pukotine	(B = 0.5 mm)	(a/20 : dB = 4)	
				(_ ••• ••••,	(

Tablica 4.1-2	Prikaz vrijednosti K _i i	β po duljini fronte pukotine	(B = 0.5 mm) (a/20 : dB > 4)
---------------	-------------------------------------	------------------------------	------------------------------

	Z	Kı	β
	[mm]	[MPa(m) ^{1/2}]	[-]
1	0,000	22,33828	1,11396
2	0,083	22,11383	1,10277
3	0,167	22,05314	1,09974
4	0,250	22,04534	1,09935
5	0,333	22,05315	1,09974
6	0,417	22,11385	1,10277
7	0,500	22,33831	1,11396

Slika 4.1-3 Raspored K_I po duljini fronte pukotine (B = 0.5 mm)

Slika 4.1-4 Raspored β po duljini fronte pukotine (B = 0.5 mm)

Model ploče debljine stranice B = 1 mm

Ζ	Kı	β
[mm]	[MPa(m) ^{1/2}]	[-]
0,000	21,97639	1,09591
0,250	21,90208	1,09221
0,500	22,01129	1,09765
0,750	21,90207	1,09221
1,000	21,97636	1,09591
	Z [mm] 0,000 0,250 0,500 0,750 1,000	Z Kı [mm] [MPa(m) ^{1/2}] 0,000 21,97639 0,250 21,90208 0,500 22,01129 0,750 21,90207 1,000 21,97636

Tablica 4.1-3 Prikaz vrijednosti K₁ i β po duljini fronte pukotine (B = 1 mm) (a/20 : dB = 4)

Tablica 4.1-4 Prikaz vrijednosti K_i i β po duljini fronte pukotine (B = 1 mm) (a/20 : dB > 4)

	Z	Kı	β
	[mm]	[MPa(m) ^{1/2}]	[-]
1	0,000	22,03390	1,09878
2	0,167	21,87106	1,09066
3	0,333	21,96328	1,09526
4	0,500	21,99536	1,09686
5	0,667	21,96328	1,09526
6	0,833	21,87106	1,09066
7	1,000	22,03391	1,09878

Slika 4.1-5 Raspored K_I po duljini fronte pukotine (B = 1 mm)

Slika 4.1-6 Raspored β po duljini fronte pukotine (B = 1 mm)

Model ploče debljine stranice B = 4 mm

	Z	K	β
	[mm]	[MPa(m) ^{1/2}]	[-]
1	0,000	21,11194	1,05281
2	0,250	21,23218	1,05880
3	0,500	21,51690	1,07300
4	0,750	21,63262	1,07877
5	1,000	21,69590	1,08193
6	1,250	21,73309	1,08378
7	1,500	21,75557	1,08490
8	1,750	21,76785	1,08551
9	2,000	21,77177	1,08571
10	2,250	21,76785	1,08551
11	2,500	21,75557	1,08490
12	2,750	21,73309	1,08378
13	3,000	21,69590	1,08193
14	3,250	21,63262	1,07877
15	3,500	21,51690	1,07300
16	3,750	21,23218	1,05880
17	4,000	21,11193	1,05281

Tablica 4.1-5	Prikaz vrijednosti K ₁ i β po duljini fronte pukotine (B = 4 mm)
	······································

Slika 4.1-8 Raspored β po duljini fronte pukotine (B = 4 mm)

Model ploče debljine stranice B = 20 mm

	Z	Kı	β
	[mm]	[MPa(m) ^{1/2}]	[-]
1	0,000	20,11156	1,00292
2	0,500	20,74506	1,03451
3	1,000	21,07565	1,05100
4	1,500	21,22195	1,05829
5	2,000	21,32902	1,06363
6	2,500	21,39640	1,06699
7	3,000	21,44158	1,06924
8	3,500	21,47160	1,07074
9	4,000	21,49147	1,07173
10	4,500	21,50434	1,07237
11	5,000	21,51236	1,07277
12	5,500	21,51702	1,07301
13	6,000	21,51937	1,07312
14	6,500	21,52019	1,07316
15	7,000	21,52003	1,07316
16	7,500	21,51933	1,07312
17	8,000	21,51839	1,07307
18	8,500	21,51744	1,07303
19	9,000	21,51666	1,07299
20	9,500	21,51615	1,07296
21	10,000	21,51597	1,07295

Tablica 4.1-6 Prikaz vrijednosti K_i i β po duljini fronte pukotine (B = 20 mm)

22	10,500	21,51616	1,07296
23	11,000	21,51668	1,07299
24	11,500	21,51748	1,07303
25	12,000	21,51844	1,07308
26	12,500	21,51939	1,07312
27	13,000	21,52011	1,07316
28	13,500	21,52028	1,07317
29	14,000	21,51947	1,07313
30	14,500	21,51713	1,07301
31	15,000	21,51248	1,07278
32	15,500	21,50446	1,07238
33	16,000	21,49159	1,07174
34	16,500	21,47171	1,07075
35	17,000	21,44166	1,06925
36	17,500	21,39645	1,06699
37	18,000	21,32901	1,06363
38	18,500	21,22187	1,05829
39	19,000	21,07549	1,05099
40	19,500	20,74481	1,03450
41	20,000	20,11125	1,00290

Slika 4.1-9 Raspored K_I po duljini fronte pukotine (B = 20 mm)

Slika 4.1-10 Raspored β po duljini fronte pukotine (B = 20 mm)

Model ploče debljine stranice B = 40 mm

r			
	Z	K _I	β
	[mm]	[MPa(m) ^{1/2}]	[-]
1	0,000	20,16620	1,00564
2	0,500	20,80038	1,03727
3	1,000	21,12672	1,05354
4	1,500	21,26642	1,06051
5	2,000	21,36560	1,06545
6	2,500	21,42405	1,06837
7	3,000	21,45946	1,07014
8	3,500	21,47898	1,07111
9	4,000	21,48770	1,07154
10	4,500	21,48885	1,07160
11	5,000	21,48463	1,07139
12	5,500	21,47660	1,07099
13	6,000	21,46584	1,07045
14	6,500	21,45319	1,06982
15	7,000	21,43924	1,06913
16	7,500	21,42447	1,06839
17	8,000	21,40923	1,06763
18	8,500	21,39380	1,06686
19	9,000	21,37840	1,06609
20	9,500	21,36319	1,06534

Tablica 4.1-7 Prikaz vrijednosti K_i i β po duljini fronte pukotine (B = 40 mm)

21	10,000	21,34831	1,06459
22	10,500	21,33386	1,06387
23	11,000	21,31993	1,06318
24	11,500	21,30657	1,06251
25	12,000	21,29384	1,06188
26	12,500	21,28177	1,06127
27	13,000	21,27040	1,06071
28	13,500	21,25976	1,06018
29	14,000	21,24985	1,05968
30	14,500	21,24070	1,05923
31	15,000	21,23232	1,05881
32	15,500	21,22472	1,05843
33	16,000	21,21790	1,05809
34	16,500	21,21187	1,05779
35	17,000	21,20664	1,05753
36	17,500	21,20221	1,05731
37	18,000	21,19858	1,05713
38	18,500	21,19575	1,05699
39	19,000	21,19373	1,05688
40	19,500	21,19252	1,05682
41	20,000	21,19213	1,05680
42	20,500	21,19254	1,05682
43	21,000	21,19376	1,05689
44	21,500	21,19579	1,05699
45	22,000	21,19862	1,05713
46	22,500	21,20226	1,05731
47	23,000	21,20669	1,05753
48	23,500	21,21193	1,05779
49	24,000	21,21796	1,05809
50	24,500	21,22477	1,05843
51	25,000	21,23237	1,05881
52	25,500	21,24075	1,05923
53	26,000	21,24990	1,05969
54	26,500	21,25980	1,06018
55	27,000	21,27045	1,06071
56	27,500	21,28182	1,06128
57	28,000	21,29389	1,06188
58	28,500	21,30663	1,06251
59	29,000	21,31999	1,06318
60	29,500	21,33393	1,06388
61	30,000	21,34838	1,06460
62	30,500	21,36326	1,06534
63	31,000	21,37847	1,06610
64	31,500	21,39387	1,06687
65	32,000	21,40930	1,06763

66	32,500	21,42453	1,06839
67	33,000	21,43930	1,06913
68	33,500	21,45325	1,06983
69	34,000	21,46591	1,07046
70	34,500	21,47667	1,07099
71	35,000	21,48471	1,07139
72	35,500	21,48893	1,07161
73	36,000	21,48778	1,07155
74	36,500	21,47905	1,07111
75	37,000	21,45951	1,07014
76	37,500	21,42406	1,06837
77	38,000	21,36556	1,06545
78	38,500	21,26631	1,06050
79	39,000	21,12654	1,05353
80	39,500	20,80011	1,03726
81	40,000	20,16589	1,00563

Slika 4.1-11 Raspored K_I po duljini fronte pukotine (B = 40 mm)

Slika 4.1-12 Raspored β po duljini fronte pukotine (B = 40 mm)

Model ploče debljine stranice B = 80 mm

	Z	K	β
	[mm]	[MPa(m) ^{1/2}]	[-]
1	0,000	20,62066	1,02831
2	1,000	21,56062	1,07518
3	2,000	21,68024	1,08115
4	3,000	21,75535	1,08489
5	4,000	21,75046	1,08465
6	5,000	21,71659	1,08296
7	6,000	21,66737	1,08050
8	7,000	21,61126	1,07771
9	8,000	21,55266	1,07478
10	9,000	21,49342	1,07183
11	10,000	21,43485	1,06891
12	11,000	21,37825	1,06609
13	12,000	21,32453	1,06341
14	13,000	21,27365	1,06087
15	14,000	21,22532	1,05846
16	15,000	21,17970	1,05618
17	16,000	21,13718	1,05406
18	17,000	21,09752	1,05209
19	18,000	21,06024	1,05023
20	19,000	21,02536	1,04849

Tablica 4.1-8	Prikaz vrijednosti K, i β po dulijni fronte pukotine (B = 80 mm)

21	20,000	20,99321	1,04688
22	21,000	20,96351	1,04540
23	22,000	20,93583	1,04402
24	23,000	20,91021	1,04275
25	24,000	20,88689	1,04158
26	25,000	20,86562	1,04052
27	26,000	20,84590	1,03954
28	27,000	20,82780	1,03864
29	28,000	20,81159	1,03783
30	29,000	20,79704	1,03710
31	30,000	20,78371	1,03644
32	31,000	20,77164	1,03584
33	32,000	20,76109	1,03531
34	33,000	20,75215	1,03486
35	34,000	20,74459	1,03449
36	35,000	20,73841	1,03418
37	36,000	20,73345	1,03393
38	37,000	20,72936	1,03373
39	38,000	20,72613	1,03357
40	39,000	20,72413	1,03347
41	40,000	20,72369	1,03344
42	41,000	20,72449	1,03348
43	42,000	20,72611	1,03357
44	43,000	20,72865	1,03369
45	44,000	20,73248	1,03388
46	45,000	20,73779	1,03415
47	46,000	20,74455	1,03448
48	47,000	20,75259	1,03489
49	48,000	20,76168	1,03534
50	49,000	20,77187	1,03585
51	50,000	20,78362	1,03643
52	51,000	20,79701	1,03710
53	52,000	20,81174	1,03784
54	53,000	20,82782	1,03864
55	54,000	20,84569	1,03953
56	55,000	20,86553	1,04052
57	56,000	20,88708	1,04159
58	57,000	20,91033	1,04275
59	58,000	20,93559	1,04401
60	59,000	20,96317	1,04539
61	60,000	20,99310	1,04688
62	61,000	21,02538	1,04849
63	62,000	21,06024	1,05023
64	63,000	21,09775	1,05210
65	64,000	21,13774	1,05409

66	65,000	21,18015	1,05621
67	66,000	21,22527	1,05846
68	67,000	21,27355	1,06086
69	68,000	21,32481	1,06342
70	69,000	21,37859	1,06610
71	70,000	21,43466	1,06890
72	71,000	21,49291	1,07180
73	72,000	21,55244	1,07477
74	73,000	21,61144	1,07771
75	74,000	21,66747	1,08051
76	75,000	21,71650	1,08295
77	76,000	21,75049	1,08465
78	77,000	21,75553	1,08490
79	78,000	21,68020	1,08114
80	79,000	21,56023	1,07516
81	80,000	20,62004	1,02828

Slika 4.1-13 Raspored K_I po duljini fronte pukotine (B = 80 mm)

Slika 4.1-14 Raspored β po duljini fronte pukotine (B = 80 mm)

Model ploče debljine stranice B = 300 mm

		Kı	β
	Z [mm]	[MPa(m) ^{1/2}]	[-]
1	0,000	21,32342	1,06335
2	3,750	22,21377	1,10775
3	7,500	21,82803	1,08852
4	11,250	21,59248	1,07677
5	15,000	21,35931	1,06514
6	18,750	21,17475	1,05594
7	22,500	21,02699	1,04857
8	26,250	20,90795	1,04263
9	30,000	20,81469	1,03798
10	33,750	20,73940	1,03423
11	37,500	20,67989	1,03126
12	41,250	20,63144	1,02884
13	45,000	20,59265	1,02691
14	48,750	20,56078	1,02532
15	52,500	20,53493	1,02403
16	56,250	20,51347	1,02296
17	60,000	20,49591	1,02209
18	63,750	20,48117	1,02135
19	67,500	20,46900	1,02074
20	71,250	20,45867	1,02023

Tablica 4.1-9 Prikaz vrijednosti K_I i β po duljini fronte pukotine (B = 300 mm)

21	75,000	20,45014	1,01980
22	78,750	20,44281	1,01944
23	82,500	20,43673	1,01913
24	86,250	20,43144	1,01887
25	90,000	20,42709	1,01865
26	93,750	20,42325	1,01846
27	97,500	20,42011	1,01831
28	101,250	20,41728	1,01816
29	105,000	20,41503	1,01805
30	108,750	20,41296	1,01795
31	112,500	20,41134	1,01787
32	116,250	20,40981	1,01779
33	120,000	20,40870	1,01774
34	123,750	20,40760	1,01768
35	127,500	20,40684	1,01764
36	131,250	20,40607	1,01761
37	135,000	20,40563	1,01758
38	138,750	20,40514	1,01756
39	142,500	20,40493	1,01755
40	146,250	20,40469	1,01754
41	150,000	20,40490	1,01755
42	153,750	20,40457	1,01753
43	157,500	20,40494	1,01755
44	161,250	20,40513	1,01756
45	165,000	20,40563	1,01758
46	168,750	20,40609	1,01761
47	172,500	20,40684	1,01764
48	176,250	20,40759	1,01768
49	180,000	20,40870	1,01774
50	183,750	20,40983	1,01779
51	187,500	20,41134	1,01787
52	191,250	20,41294	1,01795
53	195,000	20,41503	1,01805
54	198,750	20,41729	1,01817
55	202,500	20,42010	1,01831
56	206,250	20,42323	1,01846
57	210,000	20,42709	1,01865
58	213,750	20,43145	1,01887
59	217,500	20,43673	1,01913
60	221,250	20,44279	1,01944
61	225,000	20,45014	1,01980
62	228,750	20,45868	1,02023
63	232,500	20,46900	1,02074
64	236,250	20,48114	1,02135
65	240,000	20,49590	1,02209

66	243,750	20,51347	1,02296
67	247,500	20,53493	1,02403
68	251,250	20,56075	1,02532
69	255,000	20,59265	1,02691
70	258,750	20,63142	1,02884
71	262,500	20,67989	1,03126
72	266,250	20,73934	1,03422
73	270,000	20,81472	1,03798
74	273,750	20,90785	1,04263
75	277,500	21,02694	1,04857
76	281,250	21,17456	1,05593
77	285,000	21,35929	1,06514
78	288,750	21,59357	1,07682
79	292,500	21,82940	1,08858
80	296,250	22,20955	1,10754
81	300,000	21,31832	1,06310

Slika 4.1-15 Raspored K_I po duljini fronte pukotine (B = 300 mm)

Slika 4.1-16 Raspored β po duljini fronte pukotine (B = 300 mm)

Prikaz promjene vrijednosti K_i i β po duljini fronte pukotine svih modela ploča

Slijedeće slike, slika 4.1-17 i slika 4.1-18, prikazuju na jednom dijagramu promjenu K_I i β po duljini fronte pukotine, odnosno po debljini ploče, za sve razmatrane modele ploča. Utvrđene vrijednosti K_I i β uspoređene su sa slijedećim analitički i numerički utvrđenim vrijednostima:

- analitičko rješenje za 2-D slučaj ravninskog stanja deformacija (K_I ≈ 20.39),
 W.D. Pilkey [24].
- 3-D model ploče sa središnjom pukotinom pod pretpostavkom ravninskog stanja deformacija koristeći ANSYS program (K_I ≈ 20.418).
- 2-D modela ploče sa središnjom pukotinom pod pretpostavkom ravninskog stanja deformacija koristeći ANSYS program (K_I ≈ 20.417), [25].
- 2-D modela ploče sa središnjom pukotinom pod pretpostavkom ravninskog stanja naprezanja koristeći ANSYS program (K_I ≈ 22.435), [25].

Slika 4.1-17 Raspored K_i po duljini fronte pukotine za različite debljine modela ploče

Slika 4.1-18 Raspored β po duljini fronte pukotine za različite debljine modela ploče

4.2 Rasprava

U izvršenim numeričkim analizama, veličine singularnih elemenata kod svih modela ploča zadovoljavaju uvjete omjera duljina stranica preporučene u priručniku ANSYS programa, [21], opisanih u poglavlju 3.3. Za ploče debljina B = 0.5 mm i B = 1 mm, za koje propisani uvjeti diktiraju mali broj elemenata po fronti pukotine (dva i četiri) napravljeni su i dodatni modeli sa šest elemenata po fronti pukotine koji mogu dati bolju raspodjelu lokalnih deformacija i naprezanja odnosno računatih parametara.

Za ploču debljine B = 0.5 mm, kod modela sa šest elemenata po duljini fronte pukotine odnos duljine i debljine singularnog elementa prelazi preporučeni iznos 4 te iznosi 12. Pokazalo se da su vrijednosti faktora intenzivnosti naprezanja po duljini fronte kod modela sa šest elemenata po fronti pukotine nešto veće od modela sa samo dva elementa po fronti. Vrijednosti faktora intenzivnosti naprezanja rastu od sredine ploče (K₁ ≈ 22.05) prema vanjskim površinama ploče gdje iznose K₁ ≈ 22.34, slika 4.1-3, tablica 4.1-2. S obzirom da su vrijednosti faktora geometrijske korekcije, β , korelirane s vrijednostima faktora intenzivnosti naprezanja, K₁, gore navedena diskusija za promjenu parametra K₁ vrijedi i za promjenu parametra β .

Za ploču debljine B = 1 mm, kod modela sa šest elemenata po duljini fronte pukotine odnos duljine i debljine stranice singularnog elementa iznosi 6. Vrijednosti faktora intenzivnosti naprezanja po duljini fronte kod modela sa šest elemenata po fronti pukotine približno su jednake vrijednostima modela sa četiri elementa po fronti. Na sredini ploče K₁ iznosi \approx 22.00, pa opada do udaljenosti od otprilike 17% debljine ploče B od vanjske površine ploče (K₁ \approx 21.87). Na vanjskim površinama ploče vrijednosti opet rastu do K₁ \approx 22.03, slika 4.1-5, tablica 4.1-4.

Model ploče debljine B = 4 mm ima 16 singularnih elemenata po duljini fronte pukotine. Vrijednost faktora intenzivnost naprezanja najveća je na sredini ploče (K_I \approx 21.77) i lagano opada približavanjem vanjskim površinama ploče da bi na udaljenosti od otprilike 12% debljine ploče B od vanjske površine ploče (K_I \approx 21.52) do vanjske površine ploče (K_I \approx 21.11) imala značajan pad, slika 4.1-7, tablica 4.1-5.

Model ploče debljine B = 20 mm ima 40 singularnih elemenata po duljini fronte pukotine. Vrijednost faktora intenzivnost naprezanja najveća je i konstantna

na većem dijelu unutrašnjosti ploče (K_I \approx 21.51). Počinje lagano opadati na udaljenosti od 20% debljine ploče od vanjske površine ploče (K_I \approx 21.49), a nagli pad ima na udaljenosti od otprilike 12% debljine ploče B od vanjske površine ploče (K_I \approx 21.40) do vanjske površine ploče (K_I \approx 20.11), slika 4.1-9, tablica 4.1-6.

Model ploče debljine B = 40 mm ima 80 singularnih elemenata po duljini fronte pukotine. Vrijednost faktora intenzivnost naprezanja ima primjetan porast od sredine ploče (K_I \approx 21.19) do udaljenosti od otprilike 10% debljine ploče B od vanjske površine ploče (K_I \approx 21.48). Odatle do vanjske površine ploče (K_I \approx 20.17) ima nagli pad, slika 4.1-11, tablica 4.1-7.

Model ploče debljine B = 80 mm ima 80 singularnih elemenata po duljini fronte pukotine. Vrijednost faktora intenzivnost naprezanja ima još veći porast od sredine ploče (K_I \approx 20.72) do udaljenosti od otprilike 4% debljine ploče B od vanjske površine ploče (K_I \approx 21.75). Odatle do vanjske površine ploče (K_I \approx 20.68) ima još veći pad, slika 4.1-13, tablica 4.1-8.

Model ploče debljine B = 300 mm ima 80 singularnih elemenata po duljini fronte pukotine. Vrijednost faktora intenzivnost naprezanja najniža je u sredini ploče i u većem dijelu unutrašnjosti ploče (K₁ \approx 20.41). Od udaljenosti od otprilike 25% debljine ploče od vanjske površine ploče (K₁ \approx 20.45) do udaljenosti od kojih 1% debljine ploče od vanjske površine ploče (K₁ \approx 22.21) ima veliki porast, a od tuda do vanjske površine ploče (K₁ \approx 21.32) strmi pad, slika 4.1-15, tablica 4.1-9.

Na dijagramu na slici 4.1-17 vidi se da su vrijednosti faktora intenzivnosti naprezanja iz analitičkog [24] i numeričkih [25] slučajeva ravninskog stanja deformacija jednake te odgovaraju vrijednostima u unutrašnjosti modela ploče debljine B = 300 mm. Kod modela ploča debljina B = 40 mm, B = 80 mm i B = 300 mm vrijednosti faktora intenzivnosti naprezanja su najveće u blizini vanjskih površina ploče. Kod modela ploče debljine B = 300 mm vrijednosti faktora intenzivnosti naprezanja su najveće u blizini vanjskih površina ploče. Kod modela ploče debljine B = 300 mm vrijednosti faktora intenzivnosti naprezanja približavaju se numeričkim vrijednostima slučaja ravninskog stanja naprezanja [25], da bi se na vanjskoj površini ploče naglo smanjile. Kod modela ploča debljina B = 4 mm i B = 20 mm vrijednosti faktora intenzivnosti naprezanja najveće su na sredini i većem dijelu unutrašnjosti modela ploče, da bi se na vanjskoj površini ploče smanjile. Kod modela ploča debljina B = 4 mm i B = 20 mm vrijednosti faktora intenzivnosti naprezanja najveće su na sredini i većem dijelu unutrašnjosti modela ploče, da bi se na vanjskoj površini ploče smanjile. Kod modela ploča debljina B = 1 mm i B = 0.5 mm vrijednosti faktora intenzivnosti naprezanja najveće su na vanjskoj površini ploče, ali se i općenito po čitavoj debljini ploče približavaju numeričkoj vrijednosti slučaja ravninskog stanja naprezanja [25].

S povećanjem debljine ploče vrijednosti faktora intenzivnosti naprezanja na vanjskim površinama ploča značajno opadaju. To je u skladu s literaturom [2, 3 i 5] gdje je izneseno da je na vanjskim površinama ploče narušena singularnost od 1/r^{1/2} singularnih konačnih elemenata, odnosno da postoji granični sloj gdje promjene vrijednosti faktora intenzivnosti naprezanja ne prate kontinuirane promjene vrijednosti iz unutrašnjosti ploče, [3, 6].

5. ZAKLJUČAK

U radu je istraženo ponašanje vrijednosti faktora intenzivnosti naprezanja K_I duž 3-D ravne fronte pukotine za model ploče sa središnjom pukotinom kroz čitavu debljinu ploče. Utvrđen je utjecaj promjene debljine ploče na vrijednosti faktora intenzivnosti naprezanja duž fronte pukotine za debljine ploča od 0.5 mm do 300 mm.

Vrijednosti faktora intenzivnosti naprezanja K_I se mijenjaju duž ravne fronte pukotine i značajno ovise o debljini ploče. Kod tankih ploča, vrijednosti faktora intenzivnosti naprezanja duž fronte pukotine se približavaju vrijednosti ravninskog stanja naprezanja te poprimaju najveće vrijednosti na vanjskim površinama ploče.

Povećanjem debljine ploče u pravilu se smanjuju vrijednosti faktora intenzivnosti naprezanja duž fronte pukotine. Za ploče debljina koje pripadaju u prijelazno područje između ravninskog stanja naprezanja i ravninskog stanja deformacija raspodjela faktora intenzivnosti naprezanja po fronti ima konveksan oblik.

Daljnjim povećanjem debljine ploče vrijednosti K_I na srednjem dijelu ploče se smanjuju. Od sredine prema vanjskim površinama ploče vrijednosti rastu da bi se približavanjem samim vanjskim površinama ponovno smanjivale. Kod vrlo debelih ploča u unutrašnjosti ploče vrijednosti faktora intenzivnosti naprezanja odgovaraju onima ravninskoga stanja deformacija. Za te ploče, u blizni vanjskih površina, vrijednosti se približavaju onima ravninskog stanja naprezanja.

ZAHVALA

Zahvalio bih prof. dr. sc. Željku Božiću što me je motivirao i podržavao tijekom izrade ovog rada.

POPIS LITERATURE

[1] Zhixue, W., On the through-thickness crack with a curve front in center-cracked tension specimens, Engineering Fracture Mechanics, 2006;73:2600-2613.

[2] Kwon, S.W., Sun, C.T., *Characteristics of three-dimensional stress fields in plates with a through-the-thickness crack*, International Journal of Fracture, 2000;104:291-315.

[3] Agrawal, A.K., Kishore, N.N., *A study of free surface effects on through cracks using BEM*, Engineering Fracture Mechanics, 2001;68:1297-1316.

[4] Shivakumar, K.N., Raju, I.S., *Treatment of singularities in cracked bodies*, International Journal of Fracture, 1990;45:159-178.

[5] Su X.M., Sun C.T., *On singular stess at the crack tip of a thick plate under inplane loading*, International Journal of Fracture, 1996;82:237-252.

[6] Nakamura, T., Parks, D.M., *Three-dimensional stress field near the crack front of a thin elastic plate*, Journal of Applied Mechanics, 1988;55:805-813.

[7] Sumi, Y., Božić, Ž., Iyama, H., Kawamura, Y., *Multiple Fatigue Cracks Propagating in a Stiffened Panel*, Journal of The Society of Naval Architecturs of Japan, 1996;179.

[8] Leblond, J.B., Mouchrif, S.E., Perrin, G., *The tensile tunnel-crack with a slightly wavy front*, International Journal of Solids and Structures, 1996;33(14):1995-2022.
[9] Rice, J.R., *First-order variation in elastic fields due to variation in location of a*

planar crack front, ASME Journal of Applied Mechanics, 1985;52(3):571-579.

[10] Bakker, A. *Three-dimensional constraint effects on stress intensity distributions in plate geometries with through-thickness cracks*, Fatigue and Fracture of Engineering Materials and Structures, 1992;15(11):1051-1069.

[11] Rolfe, S.T., Barsom, J.M., *Fracture and fatigue control in structures*, Englewood Cliffs, New York, 1977.

[12] Leblanc, F., *Contribution to a methodology for the analysis of fracture phenomena in encapsulated components*, University of Valenciennes, France, 2004:12-15.

[13] Broek, D., *Elementary engineering fracture mechanics, 3rd printing*, Martinus Nijhoff Publishers; Hague, The Netherlands, 1984.

[14] Muskhelishvili, N.I., *Some basic problems of mathematical theory of elasticity*, Noordhoff, 1953.

[15] Westergaard, H.M., *Bearing pressures and cracks*, Journal of Applied Mechanics, 1939;61:49-53.

[16] Paris, P.C., Sih, G.C., Stress analysis of cracks, ASTM STP, 1965;381:30-81

[17] Eshelby, J.D., *Stress analysis: elasticity and fracture mechanics*, ISI publ, 1968;121:13-48.

[18] Anderson, T.L., *Fracture mechanics: fundamentals and applications, 2nd Edition*, CRC Press, Inc., 1995.

[19] Tada, H., Paris, P.C., Irwin, G.C., *The stress analysis of cracks handbook, 3rd Ed*, The American Society of Mechanical Engineers; New York, 2000.

[20] Broek, D., *The practical use of fracture mechanics*, Kluwer Academic Publishers; Dordrecht, The Netherlands, 1989.

[21] Swanson Analysis System, Inc., Ansys – User's Manual, Revision 5.0, 1995.

[22] Henshell, R.D., Shaw, K.G., Crack tip finite elements are unnecessary,

International Journal of Numerical Methods in Engineering, 1975;9:495-507.

[23] Barsoum, R.S., *On the use of isoparametric finite elements in linear fracture mechanics*, International Journal of Numerical Methods in Engineering, 1976;10:25-37.

[24] Pilkey, W.D., *Formulas for Stress, Strain, and Structural Matrices*, J. Wiley & Sons; New York, 1994.

[25] Bitunjac, V., *Diplomski rad*, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje; Zagreb, 2007.

SAŽETAK

Autor: Marko Fadljević

Naslov rada: Utjecaj debljine ploče na vrijednosti faktora intenzivnosti naprezanja duž 3-D ravne fronte pukotine

U ovome radu istražen je utjecaj debljine ploče na vrijednosti faktora intenzivnosti naprezanja duž fronte pukotine za ploče sa središnjom pukotinom kroz čitavu debljinu ploče koristeći 3-D model konačnih elemenata. U analizi je primijenjen koncept linearno-elastične mehanike loma gdje se Mode I faktora intenzivnosti naprezanja, K_I, izračunava u postproceduri koristeći čvorne pomake singularnih elemenata. Razmatrane su debljine ploča od 0.5 mm do 300 mm, gdje sve ploče imaju istu duljinu i širinu te istu duljinu pukotine. U radu je utvrđena raspodjela vrijednosti K₁ po dužini fronte pukotine. Pokazalo se da vrijednosti K₁ različito variraju po duljini fronte ovisno o debljini ploče. Kod tankih ploča vrijednosti K₁ duž fronte pukotine se približavaju vrijednosti ravninskog stanja naprezanja. Kako se povećava debljina ploče vrijednosti K_I na sredini ploče se u pravilu smanjuju, a krivulja promjene vrijednosti po fronti pukotine prelazi iz konveksnog u konkavan oblik. Na samim vanjskim površinama vrijednosti K_I značajno opadaju. Taj pad vrijednosti K_I se objašnjava narušenom singularnošću od 1/r^{1/2} singularnih konačnih elemenata na vanjskim površinama ploče. Kod vrlo debelih ploča vrijednosti K_I u unutrašnjosti ploče odgovaraju ravninskom stanju deformacija.

Ključne riječi: 3-D analiza konačnim elementima; faktor intenzivnosti naprezanja; pukotina kroz čitavu debljinu ploče; utjecaj debljine uzorka ploče.

SUMMARY

Author: Marko Fadljević

Title: The effect of plate thickness on stress intensity factors along threedimensional through-thickness crack front

The effect of plate thickness on stress intensity factor values in plates with central through-thickness crack front is investigated using three-dimensional finite element model. A concept of the linear-elastic fracture mechanics is applied in the analysis, where the Mode I stress intensity factor, K_I, is calculated in a postprocessing procedure using nodal displacements of singular elements. Discussed plate thicknesses range from 0.5 mm to 300 mm, where all the plates have the same length and width, with the same crack length. Distribution of the K_I values along the crack front was determined. It turned out that K₁ values vary differently along the crack front, depending on the plate thickness. For thin plates the K₁ values along the crack front approach the plane stress value. With increasing the plate thickness the K_I values slowly decrease and their distribution along the crack front changes from convex to concave shape. On the plate free surfaces the K₁ values significantly decrease. The decrease of the K₁ values is explained by weaker singularity than square root of singular finite elements in the vicinity of the plate free surfaces. For very thick plates the K_I values in the interior plates match the plane strain state.

Keywords: 3-D finite element analysis; Stress intensity factor; Through-thickness crack; Thickness effect.