Sveučilište u Zagrebu

Rudarsko-geološko-naftni fakultet

Andrea Valjak

Ukupne emisije CO₂ u poboljšanom procesu pridobivanja nafte utiskivanjem CO₂

Zagreb, 2020.

Ovaj rad izrađen je na Zavodu za naftno inženjerstvo na Rudarsko-geološko-naftnom fakultetu pod vodstvom izv. prof. dr. sc. Domagoja Vulina i predan je na natječaj za dodjelu Rektorove nagrade u akademskoj godini 2019./2020.

Popis i objašnjenje kratica korištenih u radu:

CCS – tehnologija hvatanja i geološkog skladištenja CO₂ (engl. Carbon Capture and Storage)

CCUS – tehnologija hvatanja, utilizacije i geološkog skladištenja CO₂ (engl. *Carbon Capture Utilization and Storage*)

EOR – metoda povećanja iscrpka nafte (engl. Enhanced Oil Recovery)

GOR – omjer proizvedenog plina i nafte (engl. production gas to oil ratio)

MMP – minimalni tlak miješanja (engl. Minimum Miscibility Pressure)

UF - faktor utilizacije (engl. utilization factor)

WAG – izmjenično utiskivanje vode i plina (engl. Water-Alternating-Gas)

Popis korištenih oznaka i jedinica:

Oznaka	Jedinica	Opis
C _C	-	sadržaj ugljika smjese (maseni udio)
Eco ₂	kg	emisija CO ₂
M _C	g/mol	molekularna masa ugljika
M _{CO2}	g/mol	molarna masa ugljikovog dioksida
Mi	g/mol	molekularna masa komponente
QCO2 utisnuto	t	utisnuta količina CO ₂
QCO2 proizvedeno	t	proizvedena količina CO ₂
Qproizvdene nafte	m ³	proizvedena količina nafte
V	m ³	volumen goriva za spaljivanje
wC _{Ci}	%	udio ugljika u molarnoj masi komponente,
Wi	-	maseni udio komponente
X	-	stehiometrijski koeficijent ugljika (broj atoma ugljika u molekuli)
Zi	-	molarni udio komponente

SADRŽAJ RADA

1. UVOD 1
2. CILJEVI RADA
2.1. OPĆI CILJEVI RADA
2.2. SPECIFIČNI CILJEVI RADA
3. IZRADA REPREZENTATIVNOG MODELA 4
3.1. BAZNI SLUČAJEVI (SIMULACIJA PRIMARNE PROIZVODNJE)5
3.2. SIMULACIJA SEKUNDARNE PROIZVODNJE (ZAVODNJAVANJA)7
3.3. SIMULACIJE UTISKIVANJA CO ₂
3.4. ANALIZA PROIZVODNIH PARAMETARA10
3.5. PRORAČUN DODATNO POTREBNOG CO2 ZA UTISKIVANJE 14
3.6. PRORAČUN CO2 NASTALOG IZGARANJEM PROIZVEDENE NAFTE 16
3.7. USPOREDBA UKUPNO ZADRŽANOG CO2 I CO2 NASTALOG IZGARANJEM
PROIZVEDENE NAFTE 18
4. ZAKLJUČAK
5. ZAHVALE
6. POPIS LITERATURE
7. SAŽETAK
8. SUMMARY

Popis slika:

Slika 3-1. Grafički prikaz tijeka rada
Slika 3-2. Upotreba CO ₂ i vode kod proizvodnje nafte
Slika 3-3. Tipično postrojenje kod CO ₂ -EOR-a9
Slika 3-4. Dodatno proizvedena količina nafte nakon utiskivanja11
Slika 3-5. Količinski udjeli komponenata u tekućoj fazi za slučajeve propusnosti 5 mD 12
Slika 3-6. Količinski udjeli komponenata u plinskoj fazi za slučajeve propusnosti 5 mD. 12
Slika 3-7. Količinski udjeli komponenata u tekućoj fazi za slučajeve propusnosti 50 mD 13
Slika 3-8. Količinski udjeli komponenata u plinskoj fazi za slučajeve propusnosti 50 mD13
Slika 3-9. Usporedba uskladištenog CO ₂ i CO ₂ nastalog izgaranjem proizvedene nafte kod slučajeva propusnosti 5 mD
Slika 3-10. Usporedba uskladištenog CO_2 i CO_2 nastalog izgaranjem proizvedene nafte kod
slučajeva propusnosti 50 mD 19

Popis tablica:

Tablica 3-1. Vrijednosti faktora utilizacije kod propusnosti 5 mD	15
Tablica 3-2. Vrijednosti faktora utilizacije kod propusnosti 50 mD	15
Tablica 3-3. Emisije CO2 za svaki scenarij kod propusnosti 5 mD	17
Tablica 3-4. Emisije CO ₂ za svaki scenarij kod propusnosti 50 mD	18

1. UVOD

Sukladno Strategiji energetskog razvoja Republike Hrvatske do 2030. s pogledom na 2050. godinu (NN 25/2020), predviđa se tranzicija energetskog sektora. Teži se niskougljičnoj energiji i razvoju sektora s ciljem ublažavanja klimatskih promjena, odnosno smanjenja emisija ugljičnog dioksida i drugih stakleničkih plinova, u skladu s globalnim zahtjevima. Iako Strategija energetskog razvoja Republike Hrvatske predviđa smanjenje udjela fosilnih goriva i prelazak na druge oblike energije, naglašava se važnost CCS (engl. *Carbon Capture and Storage*) tehnologije u tranziciji.

EOR (engl. *Enhanced Oil Recovery*) metode se najčešće primjenjuju u eksploataciji naftnih ležišta za proizvodnju dodatne količine nafte nakon primarne proizvodnje (prirodnom energijom ležišta) ili nakon zavodnjavanja (Perić, 2007). Tijekom proteklih desetljeća, metode proizvodnje nafte koje primjenjuju kontinuirano utiskivanje ugljikovog dioksida i naizmjenično utiskivanje vode i plina (engl. *Water-Alternating-Gas – WAG*) su postigle veliki značaj te postale raširene EOR metode u trenutnoj svjetskoj proizvodnji nafte, uglavnom na zrelim poljima.

Razlog velikog interesa za CO₂-EOR tehnike proizvodnje leži u kombinaciji njihovih tehničkih i ekoloških prednosti. Utiskivanjem superkritičnog CO₂ moguće je doseći niže dijelove naftne zone i istisnuti nepridobive rezerve. Ako se u ležištu postigne tlak iznad minimalnog tlaka miješanja (engl. Minimum Miscibility Pressure - MMP) ugljikovodika i CO₂, CO₂ se miješa s naftom te kapljevina tj. nafta postaje mobilnija. Ekološka korist CO₂-EOR-a je povezana s podzemnim skladištenjem CO₂. Alarmantne klimatske promjene stavile su fokus na CO₂, kao staklenički plin koji uglavnom nastaje iz emisija koje nastaju izgaranjem fosilnih goriva (Al-Masari et al., 2018). Prema podacima Međunarodne agencije za energiju (eng. International Energy Agency – IEA), iskorištavanje ugljikovog dioksida za povećanje iscrpka nafte kroz proces hvatanja, utilizacije i geološkog skladištenja CO₂ (engl. Carbon Capture Utilization and Storage – CCUS) značajno doprinosi smanjenju emisija ugljičnog dioksida. Tehnologija CO2-EOR uspješno se primjenjuje i z Republici Hrvatskoj, na poljima Ivanić i Žutica, uz više od nekoliko stotina kilotona utisnutog CO₂. Jednom utisnuti CO2 zauvijek ostaje u sustavu, i kad se izdvoji na separatorima kod proizvodnih bušotina, ponovo se reinjektira u ležište, međutim potrebna je i konstantna dobava CO₂ izvana. Upravo dobava CO2 predstavlja problem u primjeni takve tehnologije, kojoj u Republici Hrvatskoj nije posvećena velika pažnja, iako se radi o metodi kojom se utiskuje znatno više CO₂ nego što ga nastaje izgaranjem posljedično dodatno pridobivene nafte.

2. CILJEVI RADA

2.1. OPĆI CILJEVI RADA

Opći je cilj ovog rada utvrditi uspješnost pojedine CO₂-EOR strategije utiskivanja u odnosu na klasično zavodnjavanje, odnosno utvrđivanje količine uskladištenog CO₂ kod CO₂-EOR procesa i usporedba s količinom CO₂ koji je nastao sagorijevanjem proizvedene nafte.

2.2. SPECIFIČNI CILJEVI RADA

Specifični ciljevi rada su:

- 1) Izrada reprezentativnog simulacijskog modela,
- Simuliranje različitih scenarija proizvodnje u simulatoru E300 (simuliranje dvaju baznih slučajeva različitih propusnosti nakon kojih slijedi zavodnjavanje i različiti scenariji utiskivanja CO₂),
- 3) Usporedba proizvodnih parametara različitih scenarija,
- Utvrditi količinu zadržanog CO₂ u ležištu u odnosu na proizvedenu količinu nafte za pojedini slučaj utiskivanja CO₂,
- 5) Utvrditi količinu CO2 koji nastaje izgaranjem proizvedene nafte,
- 6) Analiza ukupnog umanjenja CO₂.

3. IZRADA REPREZENTATIVNOG MODELA

Radni tijek u analizi sastoji se od:

- Simulacije nekoliko baznih slučajeva (primarna proizvodnja, slučajevi se razlikuju po parametrima ležišta),
- Simulacije zavodnjavanja (sekundarna proizvodnja, slučajevi se mogu razlikovati po momentu kada kreće zavodnjavanje),
- Simulacije utiskivanja CO₂ u svrhu poboljšanog iscrpka (CO₂-EOR, slučajevi se razlikuju po momentu kada kreće utiskivanje te o samim parametrima utiskivanja, poput vremena utiskivanja vode i CO₂),
- 4) Analiza proizvodnih parametara (proizvodnja, sastavi plinske i kapljevite faze),
- 5) Proračun dodatno potrebnog CO₂ za utiskivanje (sav CO₂ proizveden s naftom se ponovo utiskuje),
- Proračun CO₂ nastalog izgaranjem proizvedene nafte (sastav nafte se mijenja s vremenom proizvodnje i utiskivanja CO₂),
- Usporedba ukupno zadržanog CO₂ na temelju scenarija bez utiskivanja CO₂ i scenarija sa utiskivanjem CO₂ te podataka o količini CO₂ nastalog izgaranjem proizvedene nafte.

Na slici 3-1 je grafički prikaz tijeka rada. Uobičajeno je pridobivanje iz naftnog ležišta u tri faze: primarna faza u kojoj je ležišna energija (tlak) dovoljno velika da se može pridobivati bez utiskivanja, zatim sekundarna faza u kojoj se utiskuje već proizvedena ležišna voda ili voda iz okolnih rijeka i sl., čime voda potiskuje naftu od utisne bušotine prema proizvodnoj ili se čak utiskivanjem ponovo poveća ležišni tlak, dok se tercijarne (EOR) metode primjenjuju samo nakon ekstenzivne analize ležišta i kod najperspektivnijih kandidata za primjenu pojedine CO₂-EOR metode.

Slika 3-1. Grafički prikaz tijeka rada

3.1. BAZNI SLUČAJEVI (SIMULACIJA PRIMARNE PROIZVODNJE)

Simulacija ležišta rađena je numeričkim ležišnim simulatorom E300 (Eclipse compositional) tvrtke Schlumberger koji za proračun protjecanja fluida koristi metodu konačnih volumena. Ležišni simulator ovakvog tipa računa tlakove i materijalni balans svih faza u svakom elementarnom volumenu za svaki iteracijski korak. Pri tome se u svakom iteracijskom koraku računa fazna ravnoteža (također iterativni postupak) kako bi se odredile količine plinske i kapljevite faze za uvjet iteracije u elementarnom volumenu te kako bi se odredili sastavi plinske i kapljevite faze na temelju čega je moguće računati viskoznosti faza.

Bazni slučajevi su u okviru raspona vrijednosti parametara tipičnih naftnih ležišta u Savskoj depresiji, uključujući debljine proslojaka i udaljenosti bušotine. Vrijeme početka proizvodnje je 1.1.1970. g. Sastav i detaljna karakterizacija (fazne, i volumne promjene pri različitim tlakovima i temperaturama = PVT svojstva) fluida je preuzet iz Vulin et al. (2018), pošto se u spomenutoj publikaciji također radi o tipičnom sastavu nafte iz Savske depresije. Tlak zasićenja tog sastava nafte, pri ležišnoj temperaturi (T_r =105°C) je 137,2 bar.

Stijenski sustav pretpostavlja se kao praktički nestlačiv (stlačivost formacije $c_f=10^{-8} \text{ bar}^{-1}$), a zasićenje vodom niske stlačivosti ($c_w=3\cdot10^{-8} \text{ bar}^{-1}$) je ireducibilno (nema aktivnog akvifera).

Dubina težišta sloja je 1510 m, te se uzima kao referentna, početni prosječni tlak je 183 bar.

Bazni slučaj 1 ima sljedeće ležišne i radne parametre:

- Propusnost sloja: 5 mD
- Udaljenost utisne i proizvodne bušotine: 212 m
- Dimenzije elementarnih volumena u horizontalnom smjeru: 15 m
- Dimenzije ćelija u vertikalnom smjeru: 15 m
- Broj ćelija: $NX \times NY \times NZ = 31 \times 31 \times 15 = 14415$

U horizontalnom smjeru su veličine ćelija definirane tako da se na rubovima modela nalaze veće ćelije. Ovime se izbjegava utjecaj rubnih uvjeta, jer ležišni simulator na granicama modela pretpostavlja i fizičku barijeru protjecanju i promjenama tlaka.

Maksimalni korak za ispis rezultata je 365,25 dana, a tlak na dnu proizvodne bušotine i maksimalna brzina dotoka nafte u bušotinu su limitirani na 0,35 početnog tlaka u ležištu (64 bar) te na 50 m³/dan nafte. Vrijeme izvršavanja simulacije (engl. *run-time*) definirane na gore navedeni način je 147 sekundi.

Drugi bazni slučaj razlikuje se po propusnosti ležišta (k=50 mD).

Nakon primarne proizvodnje (bazni slučaj 1 i 2) slijedi zavodnjavanje, odnosno utiskivanje CO₂ (kontinuirano ili WAG).

3.2. SIMULACIJA SEKUNDARNE PROIZVODNJE (ZAVODNJAVANJA)

Kad tlak u naftom zasićenoj zoni padne ispod tlaka zasićenja nafte, iz nafte se izdvaja plin. Plin je znatno pokretljiviji, što rezultira povećanjem udjela plinske faze u proizvodnji. Nafta izdvajanjem lakših komponenata postaje sve viskoznija, gustoća joj se povećava te je uobičajeno započeti s utiskivanjem vode, kako bi se podržao tlak, ali i postigao efekt klipnog potiskivanja nafte od utisne do proizvodne bušotine. Ovo je prastara tehnologija koja je široko raširena iz više razloga, među kojima su najbitniji zbrinjavanje vode proizvedene zajedno sa naftom i niska cijena pumpanja tj. utiskivanja.

Stoga se za utiskivanje vode može odabrati moment kada tlak padne previše ispod tlaka zasićenja (mehanizam klipnog istiskivanja nafte) ili neposredno nakon što tlak u ležištu padne ispod tlaka zasićenja (mehanizam podržavanja tlaka). U simulacijskim slučajevima korištenim za ovaj rad, zavodnjavanje kreće kada tlak na dnu proizvodne bušotine nije dovoljan da se postigne maksimalna zadana dnevna proizvodnja.

Kod baznog slučaja 1 to odgovara omjeru proizvedenog plina i nafte (engl. *production gas to oil ratio*) GOR~150 m³/m³ i zavodnjavanje kreće nakon 16 godina primarne proizvodnje.

Kod baznog slučaja 2 zavodnjavanje kreće nakon 21 godine primarne proizvodnje.

Zavodnjavanje je definirano da će se provesti utiskivanjem vode s tlakom na dnu bušotine koji je otprilike 10% iznad hidrostatskog tlaka statičkog stupca vode u bušotini tj. oko 165 bar.

3.3. SIMULACIJE UTISKIVANJA CO2

Korištenje ugljikovog dioksida u svrhu povećanja iscrpka nafte uobičajena je praksa u naftnom inženjerstvu. U ovoj metodi CO₂ se obično utiskuje kao superkritični fluid. Kada je utisnut kod ili iznad točke kritične temperature i tlaka, superkritični CO₂ može posjedovati svojstva plina, a istovremeno imati gustoću kapljevine. U ovom stanju, nafta postaje pokretljivija. Za vrijeme utiskivanja CO₂ se miješa s naftom čime je međupovršinska napetost između dvaju fluida jednaka nuli, dio CO₂ se otapa u nafti, dolazi do efekta bubrenja nafte te smanjenja viskoznosti nafte (Mohammadian et al., 2019). Na slici 3-2 prikazan je poprečni presjek između utisne i proizvodne bušotine kada se CO₂ i voda koriste u EOR

procesu. Osim povećanja iscrpka, prednost CO₂-EOR metode je uskladištenje CO₂ kako bi se smanjile emisije CO₂ u atmosferi.

Slika 3-2. Upotreba CO₂ i vode kod proizvodnje nafte (NETL, 2010)

Sve se više pažnje posvećuje smanjenju ili uklanjanju CO₂ emisija koje potječu iz industrijskih izvora. Kao jedna od metoda ističe se proces hvatanja i sigurnog i trajnog skladištenja antropogenog CO₂ u podzemnim formacijama, odnosno sekvestracija. Kod CO₂-EOR-a sav utisnuti CO₂ ostaje sekvestriran u podzemlju ili je proizveden i ponovno utisnut na istom ili sljedećem projektu. Na ovaj način, korištenjem antropogenog CO₂, moguće je primijeniti CO₂-EOR i na poljima koja su udaljenija od prirodnih izvora CO₂ (NETL, 2010). Postrojenje za CO₂-EOR gotovo je jednako postrojenju koje se primjenjuje kod zavodnjavanja (slika 3-3). Međutim, tri procesa razlikuju zavodnjavanje od CO₂-EORa (Mohammadian et al., 2019):

- Ekstrakcija: CO₂ se izdvaja iz plina u separatoru nakon proboja do proizvodnih bušotina,
- 2) Obrada: nakon izdvajanja CO₂ se pročišćava i dehidrira prije kompresije,

3) Kompresija: CO₂ se komprimira kako bi se povisio tlak za utiskivanje.

Slika 3-3. Tipično postrojenje kod CO₂-EOR-a (Mohammadian et al., 2019)

Iako je uobičajena praksa primjena EOR metode nakon zavodnjavanja, neki autori ističu kako je moguće postići veći iscrpak nafte utiskivanjem CO₂ neposredno nakon primarne faze. U svom radu Afazi et al. (2018) navode kako je u vodomočivoj sredini moguće postići veći iscrpak prilikom sekundarnog WAG procesa u odnosu na tercijarni, dok je u naftomočivoj sredini slučaj obrnut. Al-Netaifi (2008) je uspoređivao u svom radu mješljivo WAG utiskivanje kao sekundarni proces s konvencionalnim tercijarnim WAG utiskivanjem i dokazao kako sekundarni proces WAG utiskivanja rezultira većim ukupnim iscrpkom. Međutim, sekundarni WAG zahtijeva veće količine plina za utiskivanje, osobito u početnoj fazi utiskivanja.

U simulacijskim slučajevima utiskivanje CO₂ je započelo nakon 50 godina primarne proizvodnje (bazni slučaj 1 i 2). Simulacije su uključivale nekoliko scenarija utiskivanja CO₂, a ukupno vrijeme utiskivanja iznosi 20 godina.

U prvom scenariju, nakon primarne proizvodnje, simulirano je kontinuirano utiskivanje CO₂. Ovaj proces zahtijeva kontinuirano utiskivanje unaprijed određenog volumena CO₂.

U sljedeća tri scenarija simulirano je naizmjenično utiskivanje vode i plina (engl. *Water* alternating gas – WAG). U ovom postupku se u ciklusima utiskuju obroci plina i vode, s različitim omjerima. Voda koja se izmjenjuje s utiskivanjem CO_2 smanjuje prstoliko probijanje CO_2 do proizvodne bušotine, čime se povećava koeficijent obuhvata ležišta istiskivanjem (Verma, 2015). Omjeri utiskivanja vode i CO_2 su 1:1, 1:2 i 2:1. Ciklusi utiskivanja iznose po pola godine (182,625 dana) za pojedini fluid, odnosno u slučaju WAG 1:1 jedan ciklus podrazumijeva pola godine utiskivanja CO_2 i pola godine utiskivanja vode, kod WAG 1:2 utiskivanje CO_2 iznosi jednu godinu, dok je kod WAG 2:1 isti slučaj za vodu.

3.4. ANALIZA PROIZVODNIH PARAMETARA

Obrada podataka i svi proračuni izrađeni su pomoću programa MS Excel

Proizvodnja

Na slici 3-4 prikazana je dodatno proizvedena količina nafte nakon 20 godina utiskivanja za slučajeve propusnosti 5 mD (od 50. do 60. godine) i za slučajeve propusnosti 50 mD (od 60. do 80. godine). Uočljivo je kako su slučajevi utiskivanja CO₂ daleko efikasniji od zavodnjavanja. Ovakvo razmatranje predstavlja usporediv slučaj u kojem se odlučuje da li će se pridobivanje nastaviti EOR metodom ili će se proizvodnja iz ležišta privoditi kraju.

Slika 3-4. Dodatno proizvedena količina nafte nakon utiskivanja

Sastavi plinske i kapljevite faze

Na slikama 3-5 i 3-6 prikazani su udjeli pojedinih komponenata u kapljevitoj i plinskoj fazi za slučajeve s propusnosti 5 mD (bazni slučaj 1), u pedesetoj godini, to jest na početku utiskivanja te na kraju utiskivanja (70. godina), dok su na slikama 3-7 i 3-8 prikazani udjeli komponenata za slučajeve propusnosti 50 mD (bazni slučaj 2). Vidljivo je povećanje udjela CO₂, naročito u plinskoj fazi. Ovaj proizvedeni CO₂ će se kasnije ponovno iskoristiti za utiskivanje.

Slika 3-5. Količinski udjeli komponenata u proizvedenoj kapljevitoj fazi za slučajeve propusnosti 5 mD

Slika 3-6. Količinski udjeli komponenata u plinskoj fazi za slučajeve propusnosti 5 mD

Slika 3-7. Količinski udjeli komponenata u kapljevitoj fazi za slučajeve propusnosti 50 mD

Slika 3-8. Količinski udjeli komponenata u plinskoj fazi za slučajeve propusnosti 50 mD

3.5. PRORAČUN DODATNO POTREBNOG CO2 ZA UTISKIVANJE

Performanse kontinuiranog i WAG procesa utiskivanja CO₂ procjenjuju se faktorom utilizacije. Faktor utilizacije (engl. *utilization factor*, *UF*) CO₂ definira se kao volumen utisnute količine CO₂ u standardnim uvjetima kroz barel proizvedene nafte. Koristi se za procjenu izvodljivosti projekta utiskivanja CO₂ (Lee i Lee, 2019; Olalotiti-Lawal, 2018).

Tijekom EOR procesa, određeni volumen CO₂ se kontinuirano proizvodi i reciklira, dok preostali volumen CO₂ ostaje zarobljen ili otopljen u nafti i vodi u ležištu, stoga razlikujemo bruto i neto faktor utilizacije. Bruto faktor utilizacije uključuje reciklirani i dodani (kupljeni) CO₂, dok je neto faktor utilizacije jednak bruto faktoru umanjenim za proizvedeni CO₂ (Warwick et al., 2017). Neto faktor utilizacije računa se prema formuli (2-1). Radi lakše usporedbe UF sa drugim dostupnim istraživanjima u literaturi se izražava u tonama po barelu.

$$UF = \frac{(Q_{CO_2 utisnuto} - Q_{CO_2 proizvedeno})}{Q_{proizvedene nafte}}$$
(2-1)

gdje su:

su: Q_{CO2 utisnuto} - utisnuta količina CO₂ (t)
Q_{CO2 proizvedeno} - proizvedena količina CO₂ (t)
Q_{proizvdene nafte} - proizvedena količina nafte (bbl)

U većini ležišta u koja se utiskivao CO₂, faktor utilizacije kreće se od 0,446 do 0,948 tona po barelu. Što je veća vrijednost, projekt je neučinkovitiji, a poznato je da će faktor utilizacije između 0,446 i 0,667 tona CO₂ po barelu donijeti ekonomsku isplativost (Barnhart i Coulthard, 1999; Gu i Deo, 2009).

Za izračun je uzeto u obzir samo vrijeme tercijarne proizvodnje, odnosno bilo je potrebno oduzeti od ukupne proizvedene količine, količinu koja je pridobivena primarnom proizvodnjom kako bi bilo moguće usporediti uspješnost pojedine metode. Bruto faktor utilizacije moguće je izračunati iz postojećih (ispisanih) podataka. Međutim, za izračun neto faktora utilizacije potrebno je odrediti količinu CO₂ koja se nalazi u proizvedenoj kapljevitoj i plinskoj fazi, a ona se dobije množenjem molnog udjela CO₂ u plinskoj i kapljevitoj fazi s proizvedenom količinom između dva koraka. U tablici 3-1 i 3-2 prikazani su parametri potrebni za izračun kao i vrijednosti neto i bruto faktora utilizacije, za slučajeve kod propusnosti 5 i 50 mD.

	Proizvedena količina nafte		Utisnuti	Proizvedeni	Razlika utisnutog i	Bruto UF	Neto UF
	(m ³)	(bbl)	002(1)		$CO_2(t)$	(1001)	(1001)
CO ₂	871 537	5 481 795	760 420	366 204	394 216	0.1387	0.0719
WAG 1-1	875 723	5 508 124	309 290	132 836	176 454	0.0562	0.0320
WAG 1-2	874 501	5 500 436	466 890	236 944	229 946	0.0849	0.0418
WAG 2-1	874 239	5 498 790	195 621	74 408	121 213	0.0356	0.0220

Tablica 3-1. Vrijednosti faktora utilizacije kod propusnosti 5 mD

Tablica 3-2. Vrijednosti faktora utilizacije kod propusnosti 50 mD

Proizvedena količina nafte		Utisnuti	Proizvedeni	Razlika utisnutog i	Bruto UF	Neto UF	
	(m ³)	(bbl)	$ CO_2(t)$ $CO_2(t)$		$CO_2(t)$	(t/bbl)	(t/bbl)
CO ₂	1 127 596	7 092 352	636 310	395 258	241 052	0.0897	0.0340
WAG 1-1	1 146 498	7 211 242	537 810	356 249	181 561	0.0746	0.0252
WAG 1-2	1 130 955	7 113 480	1 038 190	677 145	361 045	0.1459	0.0508
WAG 2-1	1 124 422	7 072 388	354 600	198 253	156 347	0.0501	0.0221

Promatrajući vrijednosti faktora utilizacije može se zaključiti da kada bi se utisnulo jednaku količinu CO₂, najviše CO₂ bi ostalo uskladišteno u ležištu kod metode WAG 2-1 jer je faktor utilizacije najmanji. No u ovom slučaju, kod utiskivanja samo CO₂, utisnute su veće količine, stoga je i količina CO₂ koja je ostala u ležištu veća u odnosu na ostale metode.

Tijekom prvih godina utiskivanja sav CO_2 je iskorišten. Međutim, nakon prodora CO_2 do proizvodnih bušotina, on se ponovo utiskuje tako da nema CO_2 u atmosferi. Stoga je u kasnijim godinama proizvodnje potrebno dopremiti onoliko manje CO_2 koliko je proizvedeno zajedno s naftom.

3.6. PRORAČUN CO2 NASTALOG IZGARANJEM PROIZVEDENE NAFTE

Proračun emisija rađen je pomoću sljedećih formula (Vulin, 2018):

$$wC_{C_i} = \frac{M_C \cdot x}{M_i} \tag{3-2}$$

gdje su: wC_{Ci} - udio ugljika u molarnoj masi komponente (-)

M_C - molekularna masa ugljika (M_C=12 g/mol)

x - stehiometrijski koeficijent ugljika, broj atoma ugljika u molekuli (-)

M_i - molekularna masa komponente (g/mol)

$$C_c = \sum_{i=1}^{n} (\mathbf{w}_i \cdot \mathbf{w} C_{ci}) \tag{3-3}$$

gdje su: C_C - sadržaj ugljika smjese, maseni udio (-)

w_i - maseni udio komponente (-)

$$E_{CO_2} = V \cdot \frac{1}{konverzija \ molarnog \ volumena} \cdot C_C \cdot \frac{M_{CO_2}}{M_C} \cdot \sum_{i=1}^n M_i \cdot z_i$$
(3-4)

Gdje su: ECO_2 - emisija CO_2 (kg)

V - volumen goriva za spaljivanje (m³)

konverzija molarnog volumena - pretvorba iz molarnog volumena u masu (23,685 m³/kgmol)

M_{CO2} - molarna masa ugljikovog dioksida (g/mol)

z_i - molarni udio komponente (-)

Izračun je rađen za sastav kapljevite faze, u određenom trenutku (sredina i kraj utiskivanja), uz sljedeće pretpostavke:

- tlak 101325 Pa
- temperatura 15,6°C
- gustoća CO_2 pri $20^{\circ}C 1,842$ kg/m³.

Postupak se sastojao od sljedećih koraka:

- 1) U tablicu se unosi molni udio svake komponente kapljevite faze;
- Molni udio se množi s molarnom masom kako bi se dobila ponderirana molarna masa komponente;
- Dijeljenjem ponderirane molarne mase komponente s ponderiranom molarnom masom smjese dobije se maseni udio komponente;
- 4) Pomoću formule 3-2 moguće je izračunati udio ugljika u molarnoj masi komponente;
- Množenjem masenog udjela i udjela ugljika u molarnoj masi komponente moguće je izračunati maseni udio ugljika komponente te, njihovim zbrajanjem, maseni udio ugljika u smjesi (formula 3-3);
- 6) Prema formuli 3-4 moguće je izračunati emisiju CO₂ za određeni volumen goriva.

U tablici 3-3 i 3-4 prikazane su vrijednosti emisija za svaki scenarij. Volumen koji je uzet za izračun emisija odnosi se na proizvedenu količinu od početka utiskivanja (50. godina kod propusnosti 5 mD i 60. godina kod propusnosti 50 mD) do sredine vremena utiskivanja (prvih 10 godina), odnosno do završetka utiskivanja (20 godina).

		Zavodnjavanje	CO ₂	WAG 1-1	WAG 1-2	WAG 2 -1
10 godina utiskivanja	Proizvedena količina nafte (m ³)	182 464	679 398	679 398	679 398	679 398
	Emisije CO ₂ (t)	4 958.5	18 905.8	18 688.4	18 807.3	18 553.4
20 godina utiskivanja	Proizvedena količina nafte (m ³)	329 144	871 537	875 723	874 245	874 239
	Emisije CO ₂ (t)	8 800.8	25 013.4	24 518.5	24 745.6	24 185.3

Tablica 3-3.	Emisije CO ₂ za	svaki scenarij	j kod pro	pusnosti 5 mD
--------------	----------------------------	----------------	-----------	---------------

		Zavodnjavanje	CO ₂	WAG 1-1	WAG 1-2	WAG 2 -1
10 godina utiskivanja	Proizvedena količina nafte (m ³)	182 625	927 748	927 748	927 748	927 748
	Emisije CO ₂ (t)	4 861.9	25 930.0	25 836.3	26 185.8	25 642.6
20 godina utiskivanja	Proizvedena količina nafte (m ³)	365 250	1 127 596	1 146 898	1 130 955	1 124 422
	Emisije CO ₂ (t)	9 715.3	32 355.8	32 876.4	32 739.3	31 902.3

Tablica 3-4. Emisije CO₂ za svaki scenarij kod propusnosti 50 mD

3.7. USPOREDBA UKUPNO ZADRŽANOG CO₂ I CO₂ NASTALOG IZGARANJEM PROIZVEDENE NAFTE

Na slikama 3-9 i 3-10 prikazane su količine uskladištenog CO₂ i CO₂ nastalog izgaranjem nafte proizvedene za vrijeme utiskivanja, odnosno zavodnjavanja.

Slika 3-9. Usporedba uskladištenog CO₂ i CO₂ nastalog izgaranjem proizvedene nafte kod slučajeva propusnosti 5 mD

Slika 3-10. Usporedba uskladištenog CO₂ i CO₂ nastalog izgaranjem proizvedene nafte kod slučajeva propusnosti 50 mD

4. ZAKLJUČAK

U svrhu povećanja iscrpka nafte, CO₂ može biti utiskivan kontinuirano ili naizmjenično s vodom (WAG). Različiti volumeni utisnute vode i plina kod WAG procesa mogu utjecati na konačni iscrpak. Stoga je bilo potrebno, osim simulacije zavodnjavanja i kontinuiranog utiskivanja CO₂, simulirati WAG s različitim omjerima utiskivanja vode i plina (1:1, 1:2 i 2:1). Uspoređujući sve simulacijske slučajeve, najveći iscrpak postignut je metodom WAG 1:1, za obje vrijednosti propusnosti.

Prilikom pridobivanja nafte metodom utiskivanja CO₂ dolazi do istovremenog skladištenja CO₂, što predstavlja najisplativiju opciju za smanjenje emisija CO₂ (zbog vrijednosti dodatnog iscrpka nafte). CO₂ koji nije ostao zarobljen već je proizveden s naftom, ponovno se izdvaja i utiskuje tako da nema propuštanja utisnutog CO₂ u atmosferu. Kod propusnosti 50 mD, 30 do 50% utisnutog CO₂ ostaje uskladišteno u ležištu, dok kod propusnosti 5 mD ta vrijednost iznosi i do 60%. Faktor utilizacije najmanji je kod WAG-a s omjerom 1:2, što znači da se u ovim slučajevima postiglo najveće uskladištenje u odnosu na proizvedenu količinu nafte, iako iscrpak nije najveći. Uspoređujući količine uskladištenog CO₂ i onog nastalog izgaranjem nafte proizvedene u istom razdoblju, vidljivo je kako su uskladištene količine višestruko veće. U odnosu na zavodnjavanje, emisije nastale izgaranjem nafte kod utiskivanja CO₂ su veće, ali to je ponajviše zbog veće količine proizvedene nafte u istom razdoblju.

Razmatrajući UF očigledno su suprotstavljene cijena tehnologije utiskivanja CO₂ i cijena nafte. Uključujući CO₂-EOR u metode utilizacije CO₂ i u EU sustav trgovanja emisijama, ovaj parametar bi mogao biti jednostavna poveznica svih ekonomskih elemenata u razmatranju CO₂-EOR metode, ne samo kao metode dodatnog iscrpka, nego i kao metode umanjenja CO₂ iz atmosfere, tj. skladištenja.

I bez CO₂-EOR-a, nafta iz istog ležišta može se proizvesti drugim tehnologijama, kao što je zavodnjavanje, no one ne pružaju nikakvu ekološku korist već dovode do povećanja emisija CO₂.

5. ZAHVALE

Zahvaljujem se mentoru izv. prof. dr. sc. Domagoju Vulinu na uloženom vremenu i entuzijazmu te asistentici Maji Arnaut na svim korisnim savjetima i pomoći prilikom izrade ovog rada.

Pri izradi rada korišten je simulacijski softverski paket Schlumberger Eclipse, koji je doniran RGN fakultetu za korištenje u akademske svrhe.

6. POPIS LITERATURE

- AFZALI, S., REZAEI, N., ZENDEHBOUDI, S., 2018. A comprehensive review on Enhanced Oil Recovery by Water Alternating Gas (WAG) injection. Fuel, 227 (2018), str. 218-246.
- AL-MASRI, W., PAPASPYROU, C., SHAPIRO, A., 2018. Study of the Feasibility of the Carbon Dioxide Injection in a North Sea Petroleum Reservoir. SPE Europec featured at 80th EAGE Conference and Exhibition, 11-14 June, Copenhagen, Denmark.
- 3. AL-NETAIFI, A. S., 2008. Experimental investigation of CO2 miscible oil recovery at different conditions. Doktorska disertacija. Rajib: King Saud University.
- 4. BARNHART, W., COULTHARD, C., 1999. Weyburn CO2 miscible flood conceptual design and risk assessment. Journal of Canadian Petroleum Technology, 38(13).
- 5. LEE K, S., LEE, J. H., 2019. Hybrid Enhanced Oil Recovery Using Smart Waterflooding. Gulf Professional Publishing.
- 6. GU Z., DEO M. 2009. Applicability of carbon dioxide enhanced oil recovery to reservoirs in the Uinta Basin, Utah. Open-File Report 538, Utah Geological Survey
- MOHAMMADIAN, E., MOHAMED JAN, B., AZDARPOUR, A., HAMIDI, H., HIDAYATI BINTI OTHMAN, N., DOLLAH, A., NURLIYANA BINTI CHE MOHAMED HUSSEIN, S., AZRINA BINTI SAZALI, R., 2019. CO2-EOR/Sequestration: Current Trends and Future Horizons. Enhanced Oil Recovery Processes - New Technologies. IntechOpen.
- OLALOTITI-LAWAL, F., ONISHI, T., DATTA-GUPTA, A., FUJITA, Y., WATANABE, D., & HAGIWARA, K., 2018. Post-Combustion CO₂ WAG Pilot in a Mature Field: Model Calibration and Optimization. SPE Annual Technical Conference and Exhibition, Dallas, Texsas.
- 9. PERIĆ, M., 2007. Englesko-hrvatski enciklopedijski rječnik istraživanja i proizvodnje nafte i plina. Zagreb, INA Industrija nafte dd.
- Strategija energetskog razvoja Republike Hrvatske do 2030. s pogledom na 2050. godinu. (NN 25/2020)
- 11. VERMA M. K., 2015. Fundamentals of carbon dioxide-enhanced oil recovery (CO2-EOR): a supporting document of the assessment methodology for hydrocarbon recovery using CO2-EOR associated with carbon sequestration. Reston, U.S. Geological Survey.
- 12. VULIN, D., 2018. Interna skripta iz kolegija Karakterizacija i modeliranje PVT ponašanja fluida. Zagreb, Rudarsko-geološko-naftni fakultet

- 13. VULIN, D., GAĆINA, M., BILIČIĆ, V., 2018. Slim-tube simulation model for CO2 injection EOR. Rudarsko-geološko-naftni zbornik, 33 (2), str. 37-49.
- WARWICK, P. D., VERMA, M. K., ATTANASI, E., OLEA, R. A., 2017. A Database and Probabilistic Assessment Methodology for Carbon Dioxide-enhanced Oil Recovery and Associated Carbon Dioxide Retention in the United States. Energy Procedia 114:7055-7059.

Internetski izvori:

 15. NETL (National Energy Technology Laboratory), 2010. Carbon Dioxide Enhanced Oil Recovery: Untapped Domestic Energy Supply and Long Term Carbon Storage Solution.
URL: <u>https://www.netl.doe.gov/sites/default/files/netl-file/CO2_EOR_Primer.pdf</u> (29.8.2020.)

7. SAŽETAK

Andrea Valjak

Ukupne emisije CO2 u poboljšanom procesu pridobivanja nafte utiskivanjem

CO_2

EOR metodom utiskivanja ugljikovog dioksida, osim povećanja iscrpka, postiže se skladištenje značajnih količina CO_2 u podzemnim formacijama. Kako bi se usporedila uspješnost pojedine metode, 12 scenarija utiskivanja je simulirano pomoću ležišnog simulatora E300 (*Eclipse compositional*). Simulacije su uključivale dva bazna slučaja različitih propusnosti (primarna proizvodnja) nakon kojih je slijedilo zavodnjavanje, kontinuirano utiskivanje CO_2 ili WAG utiskivanje s različitim omjerima utiskivanja vode i CO_2 (1:1, 1:2 i 2:1). Simulacijama su dobiveni podaci o promjeni proizvodnje i sastava fluida (plina i nafte) pomoću koji je bilo moguće provesti daljnju analizu te odrediti dodatni iscrpak, količinu uskladištenog CO_2 i emisije nastale izgaranjem proizvedene nafte. Usporedbom rezultata vidljivo je kako je kod svih scenarija s utiskivanjem CO_2 ostaju trajno uskladištene u ležištu što značajno doprinosi smanjenju emisija CO_2 .

Ključne riječi: CO2-EOR, WAG, emisije, zavodnjavanje, simulacija

8. SUMMARY

Andrea Valjak

Net CO₂ Emissions in CO₂-injection Enhanced Oil Recovery Process

In addition to increasing the recovery, the EOR method of carbon dioxide injection achieves the storage of significant amounts of CO_2 in underground formations. In order to compare the performance of each method, twelve injection scenarios were simulated, using the E300 (Eclipse compositional) simulator. The simulations included two base cases with different permeabilities (primary production) followed by waterflooding, continuous CO_2 injection or WAG injection with different water and CO_2 injection ratios (1:1, 1:2 and 2:1). The simulations provided time-series of production and fluid composition data, which made it possible to conduct further analysis and determine the additional recovery, the amount of stored CO_2 and emissions from the combustion of produced oil. The results show that in all scenarios with CO_2 injection a higher recovery was achieved compared to waterflooding, but also that significant amounts of CO_2 remained permanently stored in the reservoir, which significantly contributes to the reduction of CO_2 emissions.

Kaywords: CO₂-EOR, WAG, emissions, waterflooding, simulation