Sveučilište u Zagrebu

Geodetski fakultet

Karlo Stipetić

Određivanje 3D pomaka stupova i deformacijska analiza kalibracijske baze Geodetskog fakulteta Sveučilišta u Zagrebu

Zagreb, 2024.

Ovaj rad izrađen je na Sveučilištu u Zagrebu Geodetskom fakultetu, u Zavodu za primijenjenu geodeziju, na Katedri za instrumentalnu tehniku, pod vodstvom mentora prof. dr. sc. Mladena Zrinjskog i predan je na natječaj za dodjelu Rektorove nagrade u akademskoj godini 2023./2024.

Popis i objašnjenje kratica upotrijebljenih u radu

CROPOS	hrv. Hrvatski pozicijski sustav engl. Croatian Positioning System
DOF	hrv. Digitalna ortofoto karta engl. Digital Orthophoto
ETRS89	hrv. Europski terestrički referentni sustav 1989 engl. European Terrestrial Reference System 1989
FIG	hrv. Međunarodna udruga geodeta fr. Fédération internationale des géomètres
GNSS	hrv. Globalni navigacijski satelitski sustavi engl. Global Navigation Satellite Systems
HTRS96	hrv. Hrvatski terestrički referentni sustav 1996 engl. Croatian Terrestrial Reference System 1996
LLR	hrv. Lasersko mjerenje udaljenosti do reflektora na Mjesecu engl. Lunar Laser Ranging
SLR	hrv. Lasersko mjerenje udaljenosti do reflektora na satelitu engl. Satellite Laser Ranging
ТМ	hrv. Transverzalna Mercatorova projekcija engl. Transverse Mercator
VLBI	hrv. Dugobazisna interferometrija engl. Very Long Baseline Interferomtery

SADRŽAJ

1. UVOD	1
2. CILJEVI RADA	3
3. KALIBRACIJSKA BAZA GEODETSKOG FAKULTETA SVEUČILIŠTA U	
ZAGREBU	4
4. MJERENJE DULJINA ELEKTROOPTIČKIM DALJINOMJEROM	9
4.1. Atmosferske korekcije	9
4.1.1. Prva brzinska korekcija duljine	
4.1.2. Druga brzinska korekcija duljine	
5. TRIGONOMETRIJSKO ODREĐIVANJE VISINSKIH RAZLIKA	
6. METODOLOGIJA RJEŠAVANJA GEODETSKOG ZADATKA	15
6.1. Planiranje oblika geodetske mreže	15
6.2. Primijenjeni precizni geodetski instrumentarij i pribor	
6.3. Java Applied Geodesy 3D (JAG3D)	
6.4. Teorijska osnova deformacijske analize	
6.4.1. Izjednačenje svake epohe zasebno i otkrivanje grubih pogrešaka mjere	enja . 23
6.4.2. Otkrivanje i određivanje pomaka referentnih točaka	
6.4.3. Otkrivanje i određivanje pomaka točaka objekta	27
7. TERENSKA IZVEDBA PRECIZNIH GEODETSKIH MJERENJA	
7.1. Rekognosticiranje terena i priprema za obavljanje geodetskih mjerenja	
7.2. Određivanje visina instrumenta i prizme	
7.3. Izvedba nulte epohe mjerenja	
7.4. Izvedba prve epohe mjerenja	
8. RAČUNSKA OBRADA REZULTATA MJERENJA	
8.1. Računska obrada rezultata nulte epohe mjerenja	

8.2. Računska obrada rezultata prve epohe mjerenja	
8.3. Određivanje približnih nepoznanica u lokalnom koordinatnom	sustavu 40
9. IZJEDNAČENJE GEODETSKE MREŽE	
9.1. Rezultati izjednačenja mjerenja nulte epohe	
9.2. Rezultati izjednačenja mjerenja prve epohe	
10. REZULTATI DEFORMACIJSKE ANALIZE	
11. ZAKLJUČAK	
12. ZAHVALA	
13. LITERATURA	
14. POPIS SLIKA	
15. POPIS TABLICA	
16. SAŽETAK	
17. SUMMARY	
18. ŽIVOTOPIS	
19. POPIS PRILOGA	

1. UVOD

Rad koji se nalazi pred Vama rezultat je ideje nastale postupno tijekom studiranja. Kolegiji na Fakultetu omogućuju uvid u stvarnu širinu geodezije kao znanosti i struke. S vremenom je postalo sve jasnije da geodezija nije samo vezana uz katastar i zemljišne knjige, već da se primjenjuje u brojnim drugim zadacima i izazovima.

Jedan od takvih izazova jesu precizni geodetski radovi, u kojima se zahtijeva najviša točnost. Čak i uz najsuvremeniju tehnologiju, visokoprecizne rezultate nije jednostavno ostvariti. Znanost se na razne načine u prošlosti nalazila u zadacima u kojima se zahtijeva visoka preciznost te su ti načini opisani u brojnim znanstvenim literaturama. Radovi s povećanom točnošću najčešće su potrebni prilikom izgradnje kompleksnih građevinskih objekata, poput tunela, brana, mostova, visokih zgrada i slično. Jedan od uvjeta za izvođenje preciznih geodetskih mjerenja jest kvalitetna geodetska osnova, odnosno kvalitetno stabilizirane geodetske točke s kojih se izvode geodetska mjerenja. Geodetska osnova za precizne geodetske radove redovito se nalazi u obliku betonskih stupova, najčešće u blizini većih i kompleksnijih izgrađenih objekata (mostova, brana, tunela). Ideja je bila pronaći takvu geodetsku osnovu te odrediti pomake stupova i deformacijsku analizu kroz određeno vremensko razdoblje, odnosno ispitati stabilnost geodetske osnove.

Kalibracijska baza Geodetskog fakulteta Sveučilišta u Zagrebu služi kao testni poligon za obavljanje preciznih geodetskih mjerenja i umjeravanje različitih geodetskih instrumenata. Općenito, kalibracijska baza sastoji se od dva ili više trajno stabiliziranih geodetskih stupova s ugrađenim vijkom za prisilno centriranje, a služi za definiranje mjerila velikih duljina. Kalibracijska baza Geodetskog fakulteta Sveučilišta u Zagrebu izgrađena je 1982. godine na nasipu oteretnog kanala Sava – Odra u Donjoj Lomnici, u blizini Velike Gorice (Solarić i dr. 1992). Od izgradnje do danas, obavljen je veliki broj preciznih umjeravanja kalibracijske baze različitim mjernim instrumentima i metodama. Praktičnu primjenu kalibracijska baza dobila je razvojem elektrooptičkih daljinomjera, a razvitkom GNSS-a kalibracijska baza postaje testno područje za ispitivanje GNSS-uređaja (Zrinjski i dr. 2022a).

Deformacijska analiza je određivanje gibanja rastavljenog na komponentne, sukladno realizaciji referentnoga koordinatnog sustava. Pritom praćenje položaja istih diskretnih točaka u nizu epoha referentni koordinatni sustav zadržava svoju prostornu orijentaciju i položaj u odnosu na tijelo Zemlje.

Pronalaskom odgovarajuće geodetske osnove na kojoj će se izvoditi precizna geodetska mjerenja, započeta je priprema i realizacija terenskog dijela zadatka. Svrha ovoga rada je određivanje pomaka stupova kalibracijske baze Geodetskog fakulteta Sveučilišta u Zagrebu te deformacijska analiza kalibracijske baze kao aproksimiranim građevinskim objektom u jednoj cjelini.

Formirana je skica geodetske mreže te je pripremljen potreban instrumentarij za izvođenje mjerenja uz numerički i grafički prikaz rezultata provedene analize. Upotrijebljena je precizna geodetska mjerna stanica Leica TC2003, stativi, precizne prizme Leica GPH1, nosači za prizme i ostali potreban pribor. Osmišljen je plan geodetske izmjere, odnosno odlučeno je da će se mjerenja izvesti girusnom metodom. Uz mjerenja potrebnih geodetskih veličina za računanje koordinata (horizontalnih pravaca, zenitnih kutova i kosih duljina), pri čemu su mjerene kose duljine do 400 m, potrebno je mjeriti i atmosferske parametre (temperaturu zraka, atmosferski tlak i relativnu vlažnost zraka) te je potrebno u obzir uzeti atmosferske korekcije i redukcije mjerenih duljina.

Nakon obavljenih preciznih geodetskih mjerenja provedena je računska obrada i analiza dobivenih rezultata. Obrada i analiza provedeni su pomoću softvera opisanih u nastavku ovoga rada te su opisani svi primijenjeni postupci i rezultati mjerenja.

2. CILJEVI RADA

Gradnjom sve više kompleksnih objekata, potražnja za preciznim geodetskim mjerenjima sve je veća. Cilj ovoga rada je odrediti 3D pomake odabranih geodetskih stupova te provesti deformacijsku analizu kalibracijske baze Geodetskog fakulteta Sveučilišta u Zagrebu u određenom vremenskom razdoblju. Kalibracijska baza upotrijebljena je kao testni poligon, odnosno geodetska mreža za posebne namjene, uz uvjet uspostave dopunskih točaka. Dopunske točke potrebno je uspostaviti da bi mreža imala što je moguće pravilniji oblik, budući da konfiguracija mreže utječe na rezultate obrade mjerenja i kontrole.

Geodetska mjerenja obavljena su u rujnu 2023. godine pri visokim temperaturama zraka te u veljači 2024. godine pri niskim temperaturama zraka. Mjerenja su planirana upravo na taj način, iz razloga što gotovo svi materijali, pa tako i beton od kojega su izrađeni geodetski stupovi mijenjaju svojstva pod utjecajem promjene temperature. Pomaci geodetskih stupova ne mogu se uočiti okom, ali se mogu odrediti preciznim geodetskim mjerenjima. Ukoliko se utvrdi da se određeni stup kalibracijske baze pomiče više od očekivanog, potrebno je obaviti daljnja ispitivanja i odrediti može li se taj geodetski stup primijeniti za daljnje precizne geodetske radove koji su planirani s te geodetske osnove. Taj princip primjenjuje se prilikom deformacijskih analiza kompleksnijih građevinskih objekata, kako bi se odredilo jesu li ti objekti i dalje sigurni za upotrebu (npr. praćenje brane da bi se moglo na vrijeme intervenirati ukoliko se dogodio veći pomak). Pomake i deformacije određenog objekta nije moguće odrediti bez kvalitetne geodetske osnove, koju karakterizira visoka stabilnost.

3. KALIBRACIJSKA BAZA GEODETSKOG FAKULTETA SVEUČILIŠTA U ZAGREBU

Kalibracijska baza Geodetskog fakulteta Sveučilišta u Zagrebu izgrađena je za potrebe umjeravanja elektrooptičkih daljinomjera, ispitivanja točnosti novih tipova daljinomjera i postizanja jednoga zajedničkog mjerila pri mjerenju duljina do 6000 m na području Republike Hrvatske (Solarić i dr. 1992, Zrinjski 2010). Pri projektiranju kalibracijske baze posebna je pozornost posvećena analizi rasporeda stupova, tako da rasponi stupova na kalibracijskoj bazi omogućuju ispitivanje gotovo svih pogrešaka elektrooptičkih daljinomjera. Prema dostupnoj literaturi, kalibracijska baza Geodetskog fakulteta Sveučilišta u Zagrebu najdulja je kalibracijska baza i baza s najvećim brojem stupova. Razvitkom GNSS-a, kalibracijska baza postaje testno područje za ispitivanje GNSS-uređaja, zbog čistog horizonta iznad geodetskih stupova (Zrinjski i dr. 2022b). Stupovi kalibracijske baze prikazani su na slici 1 (Zrinjski 2010).

Slika 1. Kalibracijska baza Geodetskog fakulteta Sveučilišta u Zagrebu (Zrinjski 2010).

Kako kalibracijska baza služi za precizno umjeravanje elektrooptičkih daljinomjera, od značajne je važnosti kvaliteta stabilizacije geodetskih stupova. Iz tog razloga stabilizirani su pomoću armiranog betona, uz upotrebu toplinske izolacije. Za toplinsku izolaciju upotrijebljena je staklena vuna. Detaljna shema stabilizacije prikazana je na slici 2 (Solarić i dr. 1992).

Slika 2. Shema stabilizacije stupova kalibracijske baze (Solarić i dr. 1992).

Kalibracijska baza smještena je na sjevernom nasipu oteretnog kanala Sava – Odra. Nalazi se u Donjoj Lomnici, pokraj Velike Gorice (slika 4). Baza se sastoji od većeg broja stupova, kao što je vidljivo sa slike 3, a podijeljena je u dva dijela: 12 stupova od 0 m do 100 m i 13 stupova od 100 m do 3100 m.

Slika 3. Prikaz međusobne udaljenosti geodetskih stupova (Zrinjski i dr. 2022b).

Tablica 1 prikazuje nazive stupova i njihove udaljenosti od početnog stupa. Za potrebe izvedbe geodetskih mjerenja u ovome radu, a prema nazivima iz tablice 1, upotrijebljeni su stupovi ST0, ST2, ST4, ST6, ST8 i ST10.

Oznaka stupa	Udaljenost od početnog stupa ST0 [m]	
ST0	0	
ST1	100	
ST2	200	
ST3	300	
ST4	400	
ST5	500	
ST6	600	
ST7	700	
ST8	800	
ST9	900	
ST10	1000	

Tablica 1. Raspored stupova kalibracijske baze Geodetskog fakulteta Sveučilišta u Zagrebu (prema Zrinjski i dr. 2022a).

Kalibracijska baza također ima još tri dodatne točke koje nisu stabilizirane u obliku stupova, već u ravnini s tlom, a omogućuju ispitivanje daljinomjera na udaljenostima do 6000 m. Prvi dio baze do 100 m posebno je projektiran za ispitivanje fazne nehomogenosti i periodijskih pogrešaka elektrooptičkih daljinomjera (slika 3a). Drugi dio baze namijenjen je za ispitivanje preciznosti i određivanje adicijske korekcije elektrooptičkih daljinomjera. Stupovi kalibracijske baze visine su od 0,94 m u sredini baze do 1,48 m na krajevima baze te su na stupovima ugrađeni vijci za prisilno centriranje podnožnih ploča koji imaju poprečno odstupanje najviše do 5 cm u odnosu na pravac od prvog stupa do stupa na udaljenosti 1100 m (Barković i dr. 2016). Na slici 4 prikazani su stupovi kalibracijske baze udaljeni od 100 m do 1000 m od početnog stupa STO.

Slika 4. Položaj stupova kalibracijske baze.

Prilikom gradnje stupova posebna je pozornost posvećena tome da stupovi budu što točnije utjerani u pravac. Pri ugradnji podnožnih ploča s centralnim vijkom u stup trebalo je obratiti pozornost na sljedeće (Solarić i dr. 1992):

- podnožne ploče trebaju biti horizontalne,
- centralni vijci trebaju biti u pravcu kalibracijske baze (pravac: stup 1 stup 22),
- centralni vijci trebaju zadovoljavati projektirane udaljenosti od prvog stupa, s točnošću boljom od ±2 cm.

Svi su ti uvjeti na kraju uz mnogo truda uspješno zadovoljeni te pri svakom mjerenju duljina, između stupova 1 do 22, neće biti potrebno provoditi (pri točnosti do 0,2 mm) geometrijske redukcije u horizontalnoj ravnini na pravac baze stup 1 – stup 22. Visine stupova projektirane su optimiranjem na računalu tako da je uzeta u obzir visina terena, zakrivljenost Zemlje i normalni koeficijent refrakcije. Svi stupovi u blagom su konkavnom luku, sa strelicom iznosa R=0,10 m (Zrinjski 2010). Uzdužni profil kalibracijske baze prikazan je na slici 5.

Slika 5. Uzdužni profil kalibracijske baze (Solarić i dr. 1992).

Kalibracijska baza Geodetskog fakulteta Sveučilišta u Zagrebu jedinstvena je u svijetu svojom duljinom, ali i iz razloga što nije natkrivena ni okružena vegetacijom, odnosno horizont iznad geodetskih stupova je čist, čime je omogućeno izvođenje GNSS-mjerenja. Shodno tome, 2010. godine obavljena su precizna GNSS-mjerenja te su određene elipsoidne koordinate stupova ST0, ST1, ST2, ST3, ST4, ST5, ST7, ST10 i na trigonometrijskoj točki Brusnik. Time su prvi put određene koordinate stupova kalibracijske baze Geodetskog fakulteta u službenome državnom koordinatnom sustavu i projekciji HTRS96/TM primjenom CROPOS-a. Određivanjem koordinata stupova kalibracijske baze u ETRS89 osigurano je povezivanje kalibracijske baze Geodetskog fakulteta s ostalim kalibracijskim bazama u Europi i svijetu, kada one budu umjerene GNSS-om (Zrinjski i dr. 2011).

Posljednje umjeravanje kalibracijske baze Geodetskog fakulteta Sveučilišta u Zagrebu obavljeno je dvjema neovisnim metodama (preciznim elektrooptičkim daljinomjerom Leica TCA2003 i GNSS-om), pri čemu je postignuta relativna točnost 1:2 564 103 na duljini 1000 m. Razlika duljina TCA2003 – GPS na duljini 1000 m iznosi 0,39 mm, što definira mjerilo kalibracijske baze Geodetskog fakulteta s točnošću 0,39 mm na duljini od 1000 m te se može kategorizirati u precizna mjerenja (Zrinjski i dr. 2022b).

4. MJERENJE DULJINA ELEKTROOPTIČKIM DALJINOMJEROM

Za duljine mjerene elektrooptičkim daljinomjerom potrebno je uzeti u obzir sljedeće korekcije i redukcije (Zrinjski 2010):

- adicijsku korekciju i korekciju zbog odstupanja mjerne frekvencije,
- atmosferske korekcije,
- redukciju na duljinu luka na srednjoj elipsoidnoj visini baze,
- redukciju duljine u horizontalnom smjeru na luk na srednjoj elipsoidnoj visini koji prolazi iznad ili ispod prve i zadnje točke baze.

Precizno mjerenje duljina mjerni je postupak određivanja duljina s relativnom točnošću 1:400 000 ili boljom (Deumlich i Staiger 2002). Visokoprecizno mjerenje duljina zahtijeva postizanje relativne točnosti 1:1 000 000 ili bolje (Benčić i Solarić 2008). Danas se precizno umjeravanje kalibracijskih baza obavlja svjetlosnim interferometrom, preciznim elektrooptičkim daljinomjerom i GNSS-om. Prema dobivenim parametrima, mjerenja preciznim elektrooptičkim daljinomjerima na malim duljinama preciznija su u odnosu na mjerenja GNSS-om, dok GNSS mjerenja nisu osjetljiva na atmosferske parametre, pa mogu poslužiti kao neovisna kontrola mjerenja duljina na kalibracijskim bazama. Kako bi se postigla relativna točnost 1:1 000 000 ili bolja pri mjerenju elektrooptičkim daljinomjerom, potrebno je precizno mjeriti atmosferske parametre, umjeriti mjernu frekvenciju elektrooptičkog daljinomjera i odrediti periodijske pogreške. Preporuča se mjerenje atmosferskih parametara duž kalibracijske baze, uz svaki stup. Potrebno je odabrati senzor koji ima zadovoljavajuću točnost i automatizirati postupak mjerenja atmosferskih parametara (temperature zraka, atmosferskog tlaka i relativne vlažnosti zraka) (Solarić i dr. 2012).

U nastavnim poglavljima bit će opisane one korekcije koje su primijenjene u ovome radu.

4.1. Atmosferske korekcije

Atmosferske korekcije odnose se na eliminaciju ili smanjenje utjecaja temperature, tlaka i vlažnosti zraka na rezultate mjerenja. Izrazi provedenih atmosferskih korekcija u ovome radu prikazani su u nastavku.

4.1.1. Prva brzinska korekcija duljine

Fizikalni princip elektrooptičkog mjerenja duljine zasniva se na mjerenju vremena koje je potrebno elektromagnetskom valu za prijelaz mjerene duljine od instrumenta do reflektora i natrag. Uz pretpostavku da se elektromagnetski val širi pravocrtno konstantnom brzinom c, može se napisati osnovni izraz za određivanje duljine D:

$$2D = ct, \tag{1}$$

odnosno (Benčić i Solarić 2008):

$$D = \frac{1}{2}ct = Kt,$$
(2)

gdje su:

t – vrijeme potrebno mjernom signalu za prijelaz duljine od instrumenta do reflektora i natrag,

 $K = \frac{1}{2}c$ – multiplikacijska konstanta.

Svaki elektrooptički daljinomjer umjeren je u tvornici na određenu radnu brzinu za indeks loma referentne atmosfere n_0 . Svako odstupanje stanja atmosfere od referentne vrijednosti uzrokovat će pogrešku duljine. Određivanjem srednjeg indeksa loma atmosfere n u kojoj su provedena mjerenja, uvodimo tzv. brzinsku korekciju duljine (Benčić i Solarić 2008).

Uz poznatu brzinu elektromagnetskog vala u vakuumu, odredit će se brzina u zraku, kao optičkom sredstvu, poznavanjem njegova indeksa loma *n*, na osnovi poznatog zakona iz optike (Benčić i Solarić 2008):

$$N = m_0 \overline{N},\tag{3}$$

$$n = \frac{c_0}{c}.$$
 (4)

Kako je c brzina elektromagnetskog vala tijekom mjernog procesa, naziva se radnom (grupnom) brzinom. Uvrsti li se izraz (3) u (2), dobije se:

$$D = \frac{c_0}{2n}t.$$
(5)

Deriviranjem izraza (5) slijedi:

$$\mathrm{d}D = -\frac{c_0}{2n^2}t\mathrm{d}n = -\frac{D}{n}\mathrm{d}n. \tag{6}$$

Uzme li se da je indeks loma zraka $n \approx 1$, tada se prethodni izraz može napisati:

$$\mathrm{d}D = -D\mathrm{d}n.\tag{7}$$

Prva brzinska korekcija duljine K_1 tada će biti:

$$K_1 = (n_0 - n)D. (8)$$

Prema naputku proizvođača geodetske mjerne stanice pomoću koje je obavljeno mjerenje (Leica TC2003), prva brzinska korekcija duljina računa se (URL 1):

$$\Delta D_{1} = \left\{ 283,04 - \left[\frac{0,29195 \cdot p}{(1+\alpha \cdot t)} - \frac{4,126 \cdot 10^{-4} \cdot h}{(1+\alpha \cdot t)} \cdot 10^{\chi} \right] \right\} \cdot 10^{-6},$$
(9)

gdje su:

 ΔD_1 – prva brzinska korekcija duljine [ppm],

p – tlak zraka [hPa],

$$\alpha = \frac{1}{273,16},$$

t – temperatura zraka [°C],

h – relativna vlažnost zraka [%],

$$\chi = \frac{7,25 \cdot t}{237,3+t} + 0,7857.$$

Duljina D_1 korigirana za prvu brzinsku korekciju, izračunata je prema izrazu:

$$D_1 = D + \Delta D_1 \cdot D. \tag{10}$$

4.1.2. Druga brzinska korekcija duljine

Prilikom mjerenja velikih duljina važno je voditi računa o činjenici da se uski snop zraka svjetlosti ne kreće po kružnom luku Zemljina polumjera (R=6378 km) već po refrakcijskoj krivulji polumjera r (slika 6), koji je približno osam puta veći od Zemljina polumjera (Benčić i Solarić 2008).

Slika 6. Putanja svjetlosnog signala (Benčić i Solarić 2008).

Iz tih pretpostavki izvodi se korekcija indeksa loma (Benčić i Solarić 2008):

$$dn = (k - k^2) \frac{D_1^2}{12R^2},$$
(11)

pri čemu se koeficijent refrakcije može definirati izrazom:

$$k = \frac{R}{r}.$$
 (12)

Posljedično, dobiva se izraz druge brzinske korekcije duljine:

$$K_2 = -(k - k^2) \frac{D_1^3}{12R^2}.$$
(13)

Duljina D_2 korigirana za drugu brzinsku korekciju, izračunata je prema izrazu:

$$D_2 = D_1 + K_2. (14)$$

Druga brzinska korekcija duljine također je izračunata, no signifikantna je tek na osmoj decimali, odnosno ima utjecaj manji od 10^{-8} m te nije uzeta u daljnja računanja u ovom radu.

5. TRIGONOMETRIJSKO ODREĐIVANJE VISINSKIH RAZLIKA

U svrhu određivanja 3D pomaka geodetskih stupova te provođenja deformacijske analize potrebno je poznavati i visinske razlike između svih točaka u geodetskoj mreži. Visinske razlike moguće je odrediti različitim metodama, a u geodeziji je najpoznatije određivanje visinskih razlika geometrijskim i trigonometrijskim nivelmanom (Barković i Zrinjski 2020). U radu je primijenjena metoda trigonometrijskog nivelmana, a slika 7 prikazuje osnovni princip trigonometrijskog određivanja visinskih razlika.

Slika 7. Trigonometrijsko određivanje visinske razlike (Zrinjski i dr. 2024).

Iz slike 7 slijedi općeniti izraz za računanje visinske razlike (prema Macarol 1985):

$$\Delta h = d_H \cdot \cot Z + i - r, \tag{15}$$

ili

$$\Delta h = d_K \cdot \cos Z + i - r, \tag{16}$$

gdje su:

 Δh – visinska razlika između točaka 1 i 2,

 d_{H} – horizontalna duljina između točaka 1 i 2,

 d_{K} – kosa duljina od instrumenta do prizme,

Z – zenitni kut,

i – visina instrumenta,

r – visina prizme.

Pri izvođenju terenskih mjerenja, horizontalne duljine u rasponu su od 200 m do 400 m. Shodno tome, potrebno je obratiti pozornost i na utjecaj refrakcije na mjerenje duljina. Prema izrazima (17) i (18) moguće je izračunati korigirane iznose visinskih razlika za utjecaj zakrivljenosti Zemlje i model refrakcije (Macarol 1985):

$$\Delta h = d_K \cos Z + \frac{d^2}{2R} - \frac{kd^2}{2R},\tag{17}$$

$$\Delta h = d_K \cos Z + (1 - k) \frac{d^2}{2R},$$
(18)

pri čemu su:

k – koeficijent refrakcije,

R – polumjer Zemlje.

Prema dostupnoj literaturi (Macarol 1985), utjecaj Zemljine zakrivljenosti na mjerenu visinsku razliku prikazan je u tablici 2.

Tablica 2. Utjecaj Zemljine zakrivljenosti na mjerenu visinsku razliku (Macarol 1985).

<i>D</i> [m]	Utjecaj Zemljine zakrivljenosti [m]	
100	0,001	
200	0,003	
300	0,007	
400	0,01	
500	0,02	
1000	0,08	
2000	0,31	
3000	0,71	
4000	1,25	
5000	1,96	

6. METODOLOGIJA RJEŠAVANJA GEODETSKOG ZADATKA

Helmertova definicija geodezije iz 1880. godine glasi da je geodezija znanost o izmjeri i kartiranju Zemljine površine (Ihde i Reinhold 2017). S druge strane jedna od definicija geodezije s kraja 20. stoljeća jest da je geodezija znanost koja se bavi određivanjem oblika i vanjskog polja ubrzanja sile teže Zemlje i drugih nebeskih tijela kao vremenskih promjenjivih veličina te određivanjem srednjeg Zemljina elipsoida na temelju parametara mjerenja na i izvan fizičke površine Zemlje (Torge 1991).

Svako precizno geodetsko mjerenje proizlazi iz kvalitetnih pripremnih radnji. Nije dovoljno samo izaći na teren i prikupiti podatke, već je potrebno isplanirati sve aspekte mjerenja. Samo na taj način mogu se očekivati kvalitetni rezultati izmjere, koji će se dalje moći primijeniti u planirane svrhe.

6.1. Planiranje oblika geodetske mreže

Uvjet za kvalitetno obavljanje mjerenja jest kvalitetno planiranje mjerenja. Jedna od prvih stvari koju je potrebno planirati jest projekt oblika geodetske mreže. Planiranjem geodetske mreže nastoji se odabrati što povoljniji oblik geometrijskih figura koja će mjerenja zatvarati. Idealan slučaj je kada se mreža uspije isplanirati tako da mjerenja zatvaraju idealne geometrijske figure. Na oblik geodetske mreže utječe ponajviše područje na kojem se mjerenja obavljaju te gotovo nikad neće biti moguće ostvariti idealne geometrijske figure (Kapović 2010).

Osnovni 2D oblici geodetskih mreža su: geodetski četverokut, dvostruki geodetski četverokut, lanac geodetskih četverokuta, lanac trokuta, mreža trokuta, centralni sustav, dvostruki centralni sustav, lanac centralnih sustava te kombinacija navedenih (Kapović 2010). Za oblik geodetske mreže odlučeno je upotrijebiti kombinaciju geodetskih trokuta i četverokuta, zbog visokih mogućnosti kontrola i otkrivanja grubih i sustavnih pogrešaka (slika 8).

Slika 8. Skica konfiguracije geodetske mreže na kalibracijskoj bazi.

6.2. Primijenjeni precizni geodetski instrumentarij i pribor

U svrhu obavljanja geodetskih mjerenja upotrijebljena je precizna geodetska mjerna stanica Leica TC2003 (slika 9).

Slika 9. Precizna geodetska mjerna stanica i uređaj za mjerenje atmosferskih parametara.

Precizna geodetska mjerna stanica Leica TC2003 odabrana je za potrebe obavljanja preciznih geodetskih mjerenja zbog tvornički izrazito malih standardnih odstupanja. Najbitnije tehničke karakteristike geodetske mjerne stanice Leica TC2003 dane su u tablici 3.

Tehničke karakteristike	Vrijednost
Standardno odstupanje mjerenja horizontalnih pravaca	0,5"
Standardno odstupanje mjerenja vertikalnih kutova	0,5"
Standardno odstupanje mjerenja duljina	1 mm + 1 ppm
Povećanje durbina	30x

Tablica 3. Tehničke karakteristike geodetske mjerene stanice Leica TC2003 (URL 1).

Mjerenje atmosferskih parametara (temperature zraka, atmosferskog tlaka i relativne vlažnosti zraka) obavljena su pomoću uređaja za mjerenja atmosferskih parametara Lufft XA1000 (slika 9). Tehničke karakteristike uređaja Lufft XA1000 prikazane su u tablici 4.

Tablica 4. Tehničke karakteristike uređaja za mjerenje atmosferskih parametara Lufft XA1000 (URL 2).

Tehničke karakteristike	Vrijednost
Mjerno područje temperature zraka	−20 °C − 60 °C
Mjerno područje tlaka zraka	800 hPa – 1100 hPa
Mjerno područje relativne vlažnosti zraka	< 90%

Za precizne geodetske radove potrebno je primijeniti odgovarajući precizni geodetski pribor. Prilikom terenskih mjerenja upotrijebljen je pribor za prisilno centriranje: precizne podnožne ploče Leica GDF322 te stativi Leica GST20 (slika 10). Stativi su upotrijebljeni na stajalištima gdje su točke stabilizirane pomoć betonskih stupića ili bolcni u razini tla.

Slika 10. Stativ Leica GST20 (lijevo) i podnožna ploča Leica GDF322 (desno) (URL 3).

Pri mjerenjima geodetskom mjernom stanicom Leica TC2003 upotrijebljeni su i odgovarajući nosači za prizme Leica GRT144 te precizne prizme Leica GPH1 (slika 11).

Slika 11. Adapter Leica GRT144 (lijevo) i prizma Leica GPH1 (desno) (URL 3).

Mjerenja visine instrumenta i visine prizmi na stajalištima gdje su upotrijebljeni stativi provedena su pomoću mjernog uređaja Leica GHM007 i adaptera Leica GHT196 (slika 12).

Slika 12. Mjerni uređaj Leica GHM007 (lijevo) i adapter Leica GHT196 (desno) (URL 3).

6.3. Java Applied Geodesy 3D (JAG3D)

Prije početka mjerenja definiran je način obrade i analize geodetskih mjerenja te izjednačenja geodetske mreže uz odabir metode deformacijske analize. Softver JAG3D pokazao se kao najbolji izbor za obavljanje traženih zadataka.

Java Applied Geodesy 3D (JAG3D) je besplatan računalni softver otvorenog koda koji se primjenjuje za obradu i analizu geodetskih mjerenja, omogućuje obradu mjerenja dobivenih raznim geodetskim metodama, kao što su mjerenja geodetskim mjernim stanicama, nivelmanska mjerenja, GNSS-mjerenja i dr. (URL 4).

Ključne značajke i funkcije programa JAG3D jesu (URL 4):

- Obrada mjerenja JAG3D omogućuje obradu raznih vrsta geodetskih mjerenja, uključujući horizontalne pravce, zenitne kutove, kose duljine, koordinate i visinske razlike. Podaci se mogu učitati iz datoteka različitih formata koje se automatski generiraju u geodetskim instrumentima.
- Analiza geodetskih mreža program omogućuje obradu i analizu raznih vrsta geodetskih mreža kao što su nivelmanske mreže, GNSS mreže, trilateracijske mreže, triangulacijske mreže, triangotrilateracijske mreže i dr.

Primjenom softvera obavlja se izjednačenje metodom najmanjih kvadrata primjenom Gauss-Markovljeva modela te omogućuje razne alate za provedbu deformacijske analize geodetske mreže. Time je omogućena procjena horizontalnih, vertikalnih i drugih odstupanja. JAG3D omogućuje provedbu simulacija mreže u svrhu procjenjivanja točnosti koje se mogu postići *a priori* te pronalaska eventualnih grubih pogrešaka u mreži. Upravljanje i administracija projekta odvija se putem grafičkog korisničkog sučelja koje se temelji na tehnologiji JavaFX, pri čemu su podaci i postavke projekta u potpunosti pohranjeni u bazi podataka SQL. Na taj je način moguće upravljane velikom količinom podataka uz visoku učinkovitost (URL 4).

Postupak deformacijske analize primjenom softvera JAG3D može se pregledno prikazati u dva koraka:

- 1. izjednačenje svake mjerene epohe zasebno i otkrivanje grubih pogrešaka mjerenja,
- 2. otkrivanje i određivanje pomaka referentnih točaka.

6.4. Teorijska osnova deformacijske analize

Deformacijska se analiza temelji na kinematičkim načelima, tj. načelima geometrijskog razmatranja čvrstih i krutih tijela u određenom razdoblju, pri čemu se čvrstim tijelima mogu smatrati prirodne strukture Zemljine kore, na Zemljinoj površini te u unutrašnjosti. Njih predstavljamo konačnim brojem povoljno raspoređenih geodetskih točaka. Geometrijska razmatranja provode se po epohama. Dobiveni podaci deformacijske analize omogućuju razna geodinamička razmatranja i interpretaciju djelovanja geodinamičkih procesa i sila, odnosno shvaćanje uzročno-posljedične povezanosti. Deformacijska analiza može biti obavljena globalno, kontinentalno, regionalno, nacionalno i lokalno te je moguće odrediti 1D, 2D, odnosno 3D pomake. U slučaju određivanja 2D ili 3D pomaka, određivanje gibanja rastavlja se na komponentne gibanja, sukladno realizaciji referentnoga koordinatnog sustava, koji za trajanja pozicioniranja položaja istih diskretnih točaka u vremenski slijednom nizu epoha zadržava svoju prostornu orijentaciju i položaj u odnosu na tijelo Zemlje. Gibanja, odnosno pomake točaka od interesa, moguće je odrediti samo uz pretpostavku fiksiranosti referentnoga koordinatnog sustava. Metode pomoću kojih je moguće ostvariti geodetske mreže posebnih namjena za praćenje i određivanje pomaka i deformacija dijele se na terestričke (npr. triangulacija, trilateracija, geometrijski i trigonometrijski nivelman) i satelitske (npr. GNSS, VLBI, SLR i LLR) (Rožić i Razumović 2024).

U okviru određivanja pomaka i deformacija te pripadnih kinematičkih parametara i modela gibanja potrebno je, uz pridržavanje pravila struke, obaviti sljedeće (Rožić i Razumović 2024):

- jasno definirati područje obuhvata koje je zanimljivo za praćenje promjena (dio topografske površine i/ili izgrađeni objekt),
- definirati komponente pomaka koje su predmet interesa (3D, 2D + 1D, 2D, 1D) i definirati tolerancije signifikantnosti pomaka,
- primjereno odrediti broj, položaj i način građevinske stabilizacije diskretnih točaka čijim se pozicioniranjem tijekom vremena (različite epohe) može reprezentirati ukupno područje obuhvata topografske površine ili izgrađenog objekta,
- primjereno realizirati referentni koordinatni sustav za određivanje/praćenje pomaka u
 formi skupa osnovnih točaka (geodetska mreža u užem smislu), a korelirano sa skupom
 kontrolnih točaka, uz odabir odgovarajuće metodologije i kvalitete (točnost)
 izmjere/pozicioniranja. Skup osnovnih i kontrolnih točaka, sukladno međusobnom
 odnosu pojedinih točaka, definira geometrijsku konfiguraciju geodetske mreže,
- primjereno obaviti izmjeru osnovnih i kontrolnih točaka podudarnom metodologijom i homogenom kvalitetom u svim epohama, sukladno istoj konfiguraciji geodetske mreže,
- obaviti analizu podataka izmjere, određivanje položaja točaka, određivanje kvalitete položaja za svaku pojedinu epohu izmjere zasebno,
- obaviti određivanje pomaka te primijeniti odgovarajuće postupke statističkog testiranja signifikantnosti pomaka (deformacija),
- obaviti određivanje kinematičkih parametara i modelirati deformacije i zakonitosti gibanja za ukupno područje obuhvata,
- obaviti interdisciplinarnu analizu i tumačenje deformacija (uzrok posljedica).

Deformacijska analiza obuhvaća analiziranje stabilnosti određenog izgrađenog objekta, tj. pomake točaka toga objekta. Pomaci točaka i deformacije objekta od posebnog su interesa na skupocjenim objektima ili na objektima od velike važnosti. Primjeri takvih objekata su tuneli, brane, mostovi i slično (Kapović i dr. 2006). Kako bi se mogli pratiti pomaci točaka određenog objekta, potrebno je uspostaviti mrežu stabilnih točaka s kojih možemo pratiti taj objekt. Stabilne točke izvan područja deformacija nazivaju se osnovne točke. Točke koje pratimo na objektu nazivaju se kontrolne točke. Takva mreža točaka naziva se apsolutna geodetska mreža za određivanje pomaka i deformacija te je prikazana na slici 13 (Kapović 2010).

Slika 13. Apsolutna geodetska mreža za praćenje pomaka i deformacija (Kapović 2010).

Metode deformacijske analize primjenjuju se od 1970-ih, a neke od najpoznatijih su metode Hannover, Delft, Karlsruhe, Fredericton i München. Osim spomenutih metoda, na našem se području često primjenjuju analize prema metodama Ašanina i Mihajlovića. Općenito, modeli deformacijske analize dijele se na opisne i uzročno-posljedične (Zrinjski i dr. 2021). Uzročnoposljedični modeli dijele se na statičke i dinamičke. Dinamički modeli su najkompleksniji i u potpunosti opisuju realnost nekoga dinamičkog sustava. Pomaci i deformacije opisuju se kao funkcija vremena i uzročnih sila, dok statički modeli opisuju samo funkcijsku vezu između uzroka i nastalog pomaka odnosno deformacije te ne uzimaju u obzir funkciju vremena. Opisni modeli su jednostavniji i dijele se na kongruentne i kinematičke. Kinematički modeli, pomake i deformacije razmatraju kao funkcije vremena, ne uzimajući u obzir uzročne sile, dok su kongruentni modeli najjednostavniji i bave se isključivo analizom geometrijske sukladnosti objekta između epoha, ne uzimajući u obzir vremenski interval između mjerenih epoha, ni faktore odgovorne za deformacije objekta (Welsch i Heunecke 2001).

6.4.1. Izjednačenje svake epohe zasebno i otkrivanje grubih pogrešaka mjerenja

Svaka epoha zasebno se izjednačava kao slobodna mreža, odnosno uz definiciju optimalnog datuma (Rožić 1992). Pri izjednačenju geodetske mreže primjenu nalazi Gauss-Markovljev model (Feil 1989). Funkcijski i stohastički modeli dani su izrazima (Lösler i dr. 2017):

$$\mathbf{l} + \mathbf{v} = \mathbf{A}\hat{\mathbf{x}} \,, \tag{19}$$

$$\mathbf{C}_{\parallel} = \boldsymbol{\sigma}_0^2 \mathbf{Q}_{\parallel}, \tag{20}$$

pri čemu su:

A – matrica koeficijenata jednadžbi popravaka,

 $\hat{\mathbf{x}}$ – vektor prikraćenih nepoznanica,

v – vektor popravaka mjerenja,

l – vektor prikraćenih mjerenja,

 $\mathbf{Q}_{_{ll}}$ – matrica kofaktora mjerenja,

 $\sigma_0^2 - a \ priori$ faktor varijance,

 \mathbf{C}_{11} – matrica varijanci-kovarijanci mjerenja.

Sustav normalnih jednadžbi kojim se može odrediti neki datum glasi (Lösler i dr. 2017):

$$\begin{bmatrix} \mathbf{A}^{\mathrm{T}} \mathbf{Q}_{\mathrm{ll}}^{-1} \mathbf{A} & \mathbf{G} \\ \mathbf{G}^{\mathrm{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}} \\ \mathbf{k} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^{\mathrm{T}} \mathbf{Q}_{\mathrm{ll}}^{-1} \mathbf{l} \\ g \end{bmatrix},$$
 (21)

gdje su:

G – matrica svojstvenih vektora,

k – vektor Lagrangeovih korelata.

Matrica **A** je singularna jer ne sadrži nikakve podatke o datumu geodetske mreže (Lehmann i Lösler 2017). Defekt datuma uklanja se pomoću dodatne jednadžbe uvjeta $\mathbf{G}^{\mathrm{T}}\hat{\mathbf{x}} = g$, pri čemu je matrica **G** odgovorna za definiranje datuma. Taj sustav jednadžbi proširen je korelacijskim vektorom **k**, regularan je i daje procjenu nepoznatog faktora varijance (Lösler i dr. 2017):

$$\hat{\sigma}_0^2 = \frac{\mathbf{v}^{\mathrm{T}} \mathbf{Q}_{\mathrm{ll}}^{-1} \mathbf{v}}{n - u + g} = \frac{\Omega}{r},\tag{22}$$

pri čemu su:

n – broj mjerenja,

u – broj nepoznanica,

g – defekt datuma,

 $\hat{\sigma}_0^2 - a \ posteriori$ procijenjeni faktor varijance.

Rezultirajuća geodetska mreža temelji se isključivo na mjerenjima koja su uzeta u obzir u izjednačenju. Iz toga se razloga slobodno izjednačenje može primijeniti za detekciju grubih pogrešaka mjerenja. Opći model iz kojeg proizlazi detektiranje grubih mjerenja glasi (Lösler i dr. 2017):

$$\begin{bmatrix} \mathbf{A}^{\mathrm{T}}\mathbf{Q}_{11}^{-1}\mathbf{A} & \mathbf{A}^{\mathrm{T}}\mathbf{Q}_{11}^{-1}\mathbf{B} \\ \mathbf{B}^{\mathrm{T}}\mathbf{Q}_{11}^{-1}\mathbf{A} & \mathbf{B}^{\mathrm{T}}\mathbf{Q}_{11}^{-1}\mathbf{B} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}} \\ \hat{\boldsymbol{\nabla}} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^{\mathrm{T}}\mathbf{Q}_{11}^{-1}\mathbf{I} \\ \mathbf{B}^{\mathrm{T}}\mathbf{Q}_{11}^{-1}\mathbf{I} \end{bmatrix},$$
(23)

gdje su:

 $\hat{\nabla}$ – vektor procijenjenih grubih pogrešaka,

B – pridružena dizajn-matrica.

Ukoliko nema grubih pogrešaka mjerenja, ta dodatna integracija vektora $\hat{\nabla}$ u model nema značajni utjecaj na krajnji rezultat izjednačenja i očekivana vrijednost tih dodatnih parametara je tada $E\{\hat{\nabla}\}=0$. Testiranjem hipoteze utvrđuje se jesu li određeni parametri statistički značajni, tj. jesu li oni doista grube pogreške.

Vektor procijenjenih parametara grubih pogrešaka $\hat{\nabla}$ i pripadna matrica kofaktora $\mathbf{Q}_{\widehat{\nabla}\widehat{\nabla}}$ dobivaju se prema izrazima (Lösler i dr. 2017):

$$\widehat{\boldsymbol{\nabla}} = -\mathbf{Q}_{\widehat{\boldsymbol{\nabla}}\widehat{\boldsymbol{\nabla}}} \mathbf{B}^{\mathrm{T}} \mathbf{Q}_{\mathrm{II}}^{-1} \mathbf{v} , \qquad (24)$$

$$\mathbf{Q}_{\hat{\nabla}\hat{\nabla}} = (\mathbf{B}^{\mathrm{T}}\mathbf{Q}_{\mathrm{ll}}^{-1}\mathbf{Q}_{\mathrm{vv}}\mathbf{Q}_{\mathrm{ll}}^{-1}\mathbf{B})^{-1}, \qquad (25)$$

gdje je:

 $\mathbf{Q}_{vv} = \mathbf{Q}_{11} - \mathbf{A}\mathbf{Q}_{\hat{x}\hat{x}}\mathbf{A}^{T}$ – matrica kofaktora popravaka mjerenja.

Slijedi formiranje dviju test-statistika Fisherove razdiobe, koje se međusobno razlikuju samo u odabiru faktora varijance (Lösler i dr. 2017):

$$T_{\text{prio}} = \frac{\widehat{\nabla} \mathbf{Q}_{\widehat{\nabla}\widehat{\nabla}}^{-1} \widehat{\nabla}}{m\sigma_0^2} \sim F_{m,\infty} \mid \mathbf{H}_0, \qquad (26)$$

$$T_{\text{post}} = \frac{\widehat{\nabla} \mathbf{Q}_{\widehat{\nabla}\widehat{\nabla}}^{-1} \widehat{\nabla}}{m \widehat{\sigma}_{0}^{'2}} \sim F_{m,r-m} \mid \mathbf{H}_{0}, \qquad (27)$$

gdje su:

r – broj prekobrojnih mjerenja,

m – dimenzija geodetske mreže,

$$\hat{\sigma}_{0}^{'2} = \frac{\Omega - \widehat{\nabla}^{T} \mathbf{Q}_{\widehat{\nabla}\widehat{\nabla}}^{-1} \widehat{\nabla}}{r - m} - a \text{ posteriori procijenjeni faktor varijance proširenog modela.}$$

Ispitivanje postojanja grubih pogrešaka u mjerenjima obavlja se testiranjem pomoću izraza (26) i (27).

Ako test-statistika uz određenu razinu signifikantnosti prati Fisherovu centralnu razdiobu $F_{f_1f_2}$ sa stupnjevima slobode f_1 i f_2 , tj. poprima manju vrijednost od granične vrijednosti Fisherove razdiobe, tada parametri vektora $\hat{\nabla}$ nisu statistički značajni. To znači da nema grubih pogrešaka mjerenja. U suprotnome se prihvaća alternativna hipoteza. Svako mjerenje ispituje se zasebno. Zato se zasebno provodi *n* pojedinačnih proširenja modela. U svakom pojedinom proširenju modela dobije se jedan parametar vektora $\hat{\nabla}$. Ukoliko se za pojedino opažanje nulta hipoteza odbacuje, to mjerenje potrebno je izbaciti iz skupa mjerenja i ponoviti korake u izrazima od (24) do (27), iterativno sve dok se nulta hipoteza više ne odbacuje. Opisani postupak naziva se data snooping (Lösler i dr. 2017).

6.4.2. Otkrivanje i određivanje pomaka referentnih točaka

Da bi se uopće mogli odrediti pomaci točaka objekta od interesa, potrebno je provjeriti stabilnost točaka koje definiraju referentni koordinatni sustav. Ovdje se primjenjuje princip zajedničkog izjednačenja obiju epoha, u čijem se linearnom funkcijskom modelu treba napraviti podjela na referentne točke i na točke objekta sukladno sljedećem izrazu (Lösler i dr. 2017):

$$\begin{bmatrix} \mathbf{l}_{1} \\ \mathbf{l}_{2} \end{bmatrix} + \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{\mathrm{R},1} & \mathbf{A}_{\mathrm{O},1} & \mathbf{0} \\ \mathbf{A}_{\mathrm{R},2} & \mathbf{0} & \mathbf{A}_{\mathrm{O},2} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_{\mathrm{R}} \\ \hat{\mathbf{x}}_{\mathrm{O},1} \\ \hat{\mathbf{x}}_{\mathrm{O},2} \end{bmatrix}, \qquad (28)$$

gdje su:

 \mathbf{l}_1 – vektor prikraćenih mjerenja prve epohe,

 \mathbf{l}_2 – vektor prikraćenih mjerenja druge epohe,

 $\hat{\mathbf{X}}_{R}$ – subvektor uvjetno stabilnih referentnih točaka,

 $\hat{\mathbf{x}}_{0,1}, \hat{\mathbf{x}}_{0,2}$ – subvektori točaka objekta.

Elementi referentnih točaka smješteni su u submatrice $\mathbf{A}_{R,1}$ i $\mathbf{A}_{R,2}$, dok su u submatricama $\mathbf{A}_{0,1}$ i $\mathbf{A}_{0,2}$ elementi točaka objekta kojeg se prati. Stohastički dio modela formira se na način da se u matricu varijanci-kovarijanci \mathbf{C}_{11} upišu vrijednosti izvedene u pojedinačnim izjednačenjima epoha. Tako dobivena matrica je dijagonalna pošto se stohastičke ovisnosti između epoha zanemaruju zbog duljeg vremenskom razdoblja između njih (Lösler i dr. 2017):

$$\mathbf{C}_{11} = \begin{bmatrix} \mathbf{C}_{1_1 l_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{1_2 l_2} \end{bmatrix}.$$
(29)

Da bi se dokazala nepromjenjivost točaka između epoha, ponovno se testiraju nulta i alternativna hipoteza. Statističke hipoteze sada glase:

$$\mathbf{H}_{0}: \mathbf{E}(\widehat{\boldsymbol{\nabla}}_{j}) = 0 \quad \mathbf{i} \quad \mathbf{H}_{a}: \mathbf{E}(\widehat{\boldsymbol{\nabla}}_{j}) \neq \mathbf{0}, \tag{30}$$

gdje je $\widehat{\nabla}_j$ pomak ispitivane referentne točke.

Ukoliko je došlo do statistički značajnog pomaka neke referentne točke, to će u ovom zajedničkom modelu prve i druge epohe biti detektirano kao gruba pogreška. Potrebno je provesti onoliko proširenja modela koliko ima referentnih točaka, na način da se referentna točka za koju se pretpostavlja da se pomaknula, u drugoj epohi izražava kao funkcija koordinata prve epohe i promjene $\hat{\nabla}_j$. Gauss-Markovljev prošireni model sada poprima oblik (Lösler i dr. 2017):

$$\begin{bmatrix} \mathbf{l}_{1} \\ \mathbf{l}_{2} \end{bmatrix} + \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{\mathrm{R},1} & \mathbf{A}_{\mathrm{O},1} & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{\mathrm{R},2} & \mathbf{0} & \mathbf{A}_{\mathrm{O},2} & \mathbf{B}_{j,2} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_{\mathrm{R}} \\ \hat{\mathbf{x}}_{\mathrm{O},1} \\ \hat{\mathbf{x}}_{\mathrm{O},2} \\ \widehat{\mathbf{\nabla}}_{j} \end{bmatrix}.$$
(31)

U ovom koraku ispituju se sva mjerenja u kojima sudjeluje *j*-ta točka, tako da su sada u vektoru $\mathbf{B}_{j,2}$ jedinice pridružene svim mjerenjima u drugoj epohi u kojima ispitivana točka sudjeluje. Također, vektor nepoznanica sada osim prikraćenih vrijednosti nepoznanica točaka daje i vrijednost pomaka pojedine točke $\widehat{\nabla}_j$. Nulta hipoteza testira se pomoću već navedenih izraza (26) i (27). Ukoliko se ta nulta hipoteza za jednu ili više točaka odbacuje, točka s najvećom test statistikom treba se premjestiti iz grupe referentnih točaka u grupu točaka objekta. Taj postupak provodi se iterativno sve dok se ne izbace sve nestabilne referentne točke, tj. sve dok se ne prihvati nulta hipoteza.

6.4.3. Otkrivanje i određivanje pomaka točaka objekta

Nakon što se statistički dokaže da su referentne točke stabilne, može se krenuti s određivanjem eventualnih pomaka točaka objekta. Nulta i alternativna hipoteza sada glase:

$$H_0: E(d_k) = 0$$
 i $H_a: E(d_k) \neq 0$, (32)

gdje je d_k pomak pojedine točke objekta, a računa se pomoću izraza (Lösler i dr. 2017):

$$d_{k} = \mathbf{F}_{k} \begin{bmatrix} \hat{\mathbf{x}}_{0,1} \\ \hat{\mathbf{x}}_{0,2} \end{bmatrix},$$
(33)

gdje je:

 $\mathbf{F}_{k} = \begin{bmatrix} \mathbf{0} & -\mathbf{I}_{k,1} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{I}_{k,2} & \mathbf{0} \end{bmatrix}$ – matrica koeficijenata koja se sastoji od nul-matrica, a na mjestima koja odgovaraju *k*-toj točki objekta u prvoj i drugoj epohi nalaze se jedinične matrice. Odgovarajuća matrica kofaktora pomaka dobiva se prema izrazu (Lösler i dr. 2017):

$$\mathbf{Q}_{\mathbf{d}_k \mathbf{d}_k} = \mathbf{F}_k \mathbf{Q}_{\hat{\mathbf{x}}\hat{\mathbf{x}}} \mathbf{F}_{k.}^{\mathrm{T}}$$
(34)

Statistička značajnost izračunatih pomaka testira se pomoću test statistika (Lösler i dr. 2017):

$$T_{\text{prio},k} = \frac{\mathbf{d}_{k}^{\mathsf{T}} \mathbf{Q}_{\mathbf{d}_{k} \mathbf{d}_{k}}^{-1} \mathbf{d}_{k}}{m\sigma_{0}^{2}} \sim F_{m,\infty} \mid \mathbf{H}_{0}, \qquad (35)$$

$$T_{\text{post},k} = \frac{\mathbf{d}_k^{\mathsf{T}} \mathbf{Q}_{d_k d_k}^{-1} \mathbf{d}_k}{m \hat{\sigma}_0^2} \sim F_{m,r} \mid \mathbf{H}_0.$$
(36)

Ukoliko je test-statistika manja ili jednaka graničnoj vrijednosti Fisherove razdiobe za određenu razinu signifikantnosti i stupnjeve slobode, zaključuje se da nije došlo do značajnog pomaka ispitivane točke. Ukoliko se dokaže suprotno, može se zaključiti da se dogodio značajan pomak te je potrebno napraviti daljnju interdisciplinarnu analizu pomaka objekta.

7. TERENSKA IZVEDBA PRECIZNIH GEODETSKIH MJERENJA

Izvođenje preciznih geodetskih mjerenja zahtijeva visoku razinu planiranja, pripreme te koncentracije prilikom obavljanja mjerenja. Mjerenja su obavljena u dvije epohe – nultoj i prvoj jer se pomaci i deformacija nekog objekta mogu odrediti iz minimalno dva seta podataka. Nulta epoha izvedena je u rujnu 2023. godine, a prva u veljači 2024. godine, kako bi se detektirao eventualni pomak geodetskog stupa pod utjecajem visoke ili niske temperature zraka. U nastavku su opisani svi postupci obavljeni prije i za vrijeme izvođenja mjerenja.

7.1. Rekognosticiranje terena i priprema za obavljanje geodetskih mjerenja

Prva pripremna radnja koja je obavljena u sklopu ostvarenja planiranog cilja ovoga rada jest dogovor oko izvođenja mjerenja. Taj je korak možda i najbitniji dio pripreme, pošto se prethodnim dogovorom uklanja što je više moguće upitnika tijekom izvođenja mjerenja i kasnije obrade podataka. Isplanirani su i pripremljeni svi obrasci koji će biti primijenjeni te je pripremljen precizni instrumentarij potreban za mjerenje. Kako su planirana visokoprecizna geodetska mjerenja u svrhu određivanja pomaka točaka, odabran je precizni geodetski instrumentarij: precizna geodetska mjerna stanica Leica TC2003 (slika 9), precizne prizme proizvođača Leica (slika 11) te precizne podnožne ploče (slika 10, desno).

Postupak dolaska na teren te pronalazak točaka geodetske osnove naziva se rekognosticiranje terena. Rekognosticiranjem terena zaključeno je da su svi odabrani geodetski stupovi u dovoljno dobrom stanju za obavljanje izmjere te da će sva potrebna dogledanja između njih biti ostvarena. Skinuti su svi zaštitni poklopci s geodetskih stupova te su vijci za prisilno centriranje dobro očišćeni. Na slici 14 (lijevo) prikazan je geodetski stup sa zaštitnim poklopcem, dok je na slici 14 (desno) prikazan geodetski stup bez zaštitnog poklopca.

Slika 14. Betonski stupovi na kalibracijskoj bazi.

Postupak uspostave točaka geodetske mreže naziva se stabilizacija. Stabilizacija se za geodetske mreže posebnih namjena izvodi izgradnjom geodetskih stupova prikazanih na slici 14 u čijem središtu se postavlja vijak za prisilno centriranje. Geodetski stupovi dio su kalibracijske baze, stoga ih nije bilo potrebno stabilizirati.

Kalibracijska baza Geodetskog fakulteta Sveučilišta u Zagrebu postavljena je na sjevernom nasipu oteretnog kanala Sava – Odra, a svi geodetski stupovi postavljeni su približno u istom pravcu. Tako postavljena geodetska osnova nije povoljna za precizna i točna mjerenja jer ne postoji matematička kontrola zatvaranja geometrijskih figura. Iz tog razloga na južnom nasipu oteretnog kanala stabilizirane su četiri dopunske geodetske točke, pri čemu su dvije stabilizirane zabijanjem bolcne i označene sprejom crvene boje (slika 15, lijevo), a dvije geodetske točke su pronađene već prethodno stabilizirane. Stabilizirane su kao betonski stupovi u razini tla, okvirne tlocrtne dimenzije 10 cm x 10 cm (slika 15, desno).

Slika 15. Stabilizacija dopunskih točaka geodetske mreže.

Na slici 8 točke označene od ST0 do ST10 predstavljaju geodetske stupove. Točke A i D na slici 8 predstavljaju pronađene stabilizirane točke (slika 15, desno), dok su točke B i C stabilizirane metalnim bolcnama u razini tla (slika 15, lijevo).

7.2. Određivanje visina instrumenta i prizme

U svrhu preciznih geodetskih mjerenja visinskih razlika trigonometrijskim načinom, visine instrumenta i prizme na stupovima određene su posebnim načinom. Određivanje visina instrumenta i prizmi temelji se na principu zbrajanja zasebno izmjerenih visina dijelova instrumenta i prizme. Veličine su interno označene su *a*, *b* i *c*. Veličina *a* predstavlja visinu podnožne ploče iznad gornje površine betonskog stupa (slika 16, lijevo). Veličina *b* predstavlja dubinu podnožne ploče (slika 16, desno). Vrijednost *b* uzeta je kao konstantna za sve podnožne ploče. Vrijednost *c* označava visinu instrumenta ili prizme s adapterom (slika 17).

Na terenu su određene visine preciznih podnožnih ploča, odnosno vrijednosti *a*. Dubine podnožnih ploča *b* (slika 16, desno) određene su u Laboratoriju za mjerenja i mjernu tehniku Geodetskog fakulteta (slika 18).

Slika 16. Veličine a i b izmjerene na podnožnim pločama.

Vrijednost c (slika 17), odnosno visina instrumenta i prizme s nosačem određena je umjeravanjem na komparatoru u Laboratoriju za mjerenja i mjernu tehniku Geodetskog fakulteta.

Slika 17. Veličine c za geodetsku mjernu stanicu i preciznu prizmu.

Visine i dubine podnožnih ploča određene su pomičnim mjerilom (slika 18).

Slika 18. Određivanje dubina podnožnih ploča.

Konačno, izračunata je ukupna visina geodetske mjerne stanice i prizme prema sljedećem izrazu:

$$h_i = h_r = c - b + a.$$
 (37)

Visine instrumenta i prizme na stativima mjerene su primjenom preciznog pribora (slika 12).

7.3. Izvedba nulte epohe mjerenja

Nulta epoha mjerenja obavljena je dana 1. rujna 2023. U 9 sati započeto je mjerenje, odnosno zatvaranje geometrijskih figura mjerenjem horizontalnih pravaca, vertikalnih kutova te kosih duljina. Zbog visoko postavljenih zahtjeva točnosti, izmjera je obavljena na dosta drugačiji način nego što se obavlja u geodetskoj svakodnevnici. Izmjera je obavljena geodetskom mjernom stanicom Leica TC2003 (slika 9). U svrhu lakšeg praćenja navoda u ovome tekstu, priložena je skica geodetske mreže s DOF podlogom (slika 8).

Za potrebe obavljanja geodetskih mjerenja potrebno je bilo prvo postaviti prizme. Način postavljanja prizmi na geodetske stupove prikazan je na slici 19, lijevo, dok je način

postavljanja prizmi na stative prikazan na slici 19, desno. Prizme su horizontirane pomoću geodetske mjerne stanice, kako bi se osiguralo preciznije horizontiranje podnožnih ploča.

Slika 19. Prizma postavljena na geodetski stup (lijevo) i stativ (desno).

Geodetska mjerna stanica postavljena je na geodetski stup ili stativ s kojega je planiramo mjerenje potrebnih geodetskih veličina za izračun koordinata i visina. Način postavljanja geodetske mjerne stanice na geodetski stup prikazan je na slici 20, lijevo, a način postavljanja geodetske mjerne stanice na stativ prikazan je na slici 20, desno.

Slika 20. Leica TC2003 postavljena na geodetski stup (lijevo) i stativ (desno).

Osim svih elemenata potrebnih za dobivanje koordinata, na svakom stajalištu mjereni su atmosferski parametri (temperatura zraka, atmosferski tlak i relativna vlažnost zraka) uređajem za mjerenje atmosferskih parametara Lufft XA1000, koji je vidljiv na slici 20, lijevo, uz geodetsku mjernu stanicu. Atmosferski parametri upotrijebljavaju se prilikom računanja atmosferskih korekcija duljina mjerenih elektrooptičkim daljinomjerom.

Kao što je vidljivo sa slike 20, prilikom izmjere upotrijebljen je i suncobran. Suncobran je upotrijebljen iz razloga što uređaj za mjerenje atmosferskih parametara ne smije biti izložen izravnom utjecaju sunčeva zračenja kako bi geodetska mjerna stanica bila na približno jednakoj temperaturi tijekom opažanja na određenom stajalištu.

Izmjera je započela na stajalištu ST0. Prvo su postavljene prizme na vizure A0, B0 te ST2, a geodetska mjerna stanica na stajalište ST0. Prilikom izmjere u upotrebi su bile tri precizne prizme Leica GPH1 te tri obične prizme Leica GRP121, koje su se kombinirale ovisno o

točkama prema kojima se vizira. Poštovao se uvjet da na geodetskim stupovima budu precizne prizme, a prema planu opažanja da ostale prizme budu raspodjeljene po stativima prema kojima se u određenom trenutku viziralo.

Potrebno je napomenuti da je prilikom izmjere nulte epohe bio prisutan veliki utjecaj refrakcije zbog visoke temperature zraka. Mjerenja su obavljena pri temperaturama zraka oko 32 °C.

7.4. Izvedba prve epohe mjerenja

Prva epoha mjerenja izvedena je istom metodom i načinima kao nulta epoha mjerenja. Mjerenja su obavljena 8. veljače 2024. Vremenski uvjeti bili su idealni za izvođenje geodetskih mjerenja. Problem su predstavljali naleti vjetra, no nisu bili dovoljno snažni da bi negativno utjecali na geodetska mjerenja. Mjerenja su obavljena pri temperaturama zraka do 16 °C.

8. RAČUNSKA OBRADA REZULTATA MJERENJA

Nakon što su obavljena sva terenska mjerenja, potrebno je mjerene podatke prikupiti na jedno mjesto te ih početi obrađivati. Obrada svih mjerenja obavljena je pomoću Microsoft Excela, zbog visokih mogućnosti softvera po pitanju izračuna i uređivanja podataka.

8.1. Računska obrada rezultata nulte epohe mjerenja

Obrada podataka nulte epohe mjerenja započeta je na način da su prvo svi analogno zapisani podaci prepisani u Excel obrazac. Dalje su izračunati svi potrebni elementi (sredine horizontalnih pravaca, sredine zenitnih kutova i korigirane kose duljine) za potrebe izjednačenja mjerenja.

U obradi geodetskih mjerenja potrebno je izračunati dvostruke kolimacijske pogreške, pogreške indeksa vertikalnog kruga te razlike između kosih duljina mjerenih u dva položaja instrumenta u svrhu određivanja srednjih vrijednosti horizontalnih pravaca, zenitnih kutova te kosih duljina. Kako su planirana precizna geodetska mjerenja, potrebno je korigirati mjerene duljine. U slučaju provedenih mjerenja, signifikantna je prva brzinska korekcija duljine mjerene elektrooptičkim daljinomjerom.

Prethodno objašnjenim postupkom dolazi se do konačnih podataka mjerenja nulte epohe s kojima je provedeno izjednačenje mjerenja (tablica 5).

Tablica 5. Podaci obrade mjerenja nulte epohe.

OD	DO	Sredin	e horizon pravaca	ntalnih	2	Sredi zenitr kutov	ne nih va	Sredine kosih duljina	Visina instrumenta	Visina prizme
		0	'	"	0	'	"	[m]	[m]	[m]
ST0	A0	180	44	18,9	89	58	54,1	203,8089	0,2346	1,6120
ST0	B0	227	46	23,9	89	59	55,4	362,5570	0,2346	1,6255
ST0	ST2	261	39	07,1	89	58	07,0	200,0050	0,2346	0,2350
ST2	ST0	00	04	31,5	90	02	07,9	200,0048	0,2348	0,2348
ST2	A0	50	15	02,3	90	00	40,1	262,0425	0,2348	1,6120
ST2	B0	116	37	37,0	90	01	30,8	225,9346	0,2348	1,6255
ST2	ST4	180	02	59,6	89	56	54,4	200,0095	0,2348	0,2381
ST4	ST2	06	16	39,2	90	03	27,9	200,0097	0,2379	0,2350
ST4	B0	70	11	33,2	90	04	24,5	224,9747	0,2379	1,6255
ST4	C0	152	27	05,6	89	54	50,6	363,0153	0,2379	1,6585
ST4	ST6	186	17	31,7	89	57	16,9	199,9579	0,2379	0,2377
ST6	ST4	00	05	21,8	90	03	02,5	199,9578	0,2375	0,2381
ST6	B0	34	08	28,0	90	04	30,2	360,8031	0,2375	1,6255
ST6	C0	116	45	40,5	89	54	06,5	226,2368	0,2375	1,6585
ST6	ST8	180	04	32,8	89	57	12,9	200,0188	0,2375	0,2417
ST8	ST6	00	06	50,2	90	03	04,9	200,0189	0,2415	0,2377
ST8	C0	64	09	11,4	89	56	42,1	224,8260	0,2415	1,6585
ST8	D0	134	48	45,8	89	54	15,9	284,4758	0,2415	1,5840
ST8	ST10	180	08	22,5	89	56	57,7	200,0071	0,2415	0,2369
ST10	ST8	00	08	02,7	90	03	27,1	200,0067	0,2367	0,2417
ST10	C0	34	13	52,7	89	59	47,8	360,4932	0,2367	1,6585
ST10	D0	90	08	01,1	89	55	02,5	202,3001	0,2367	1,5840
A0	B0	00	07	12,2	90	00	40,8	268,8177	1,6120	1,6255
A0	ST2	50	28	38,6	89	59	28,0	262,0419	1,6120	0,2350
A0	ST0	99	23	16,8	90	01	13,4	203,8082	1,6120	0,2348
B0	C0	06	30	31,9	89	52	55,8	400,4906	1,6255	1,6585
B0	ST6	40	34	45,2	89	55	46,2	360,8015	1,6255	0,2377
B0	ST4	70	25	35,5	89	55	44,5	224,9744	1,6255	0,2381
B0	ST2	123	05	23,1	89	58	36,2	225,9334	1,6255	0,2350
B0	ST0	152	39	32,7	90	00	22,4	362,5552	1,6255	0,2348
B0	A0	186	21	20,4	89	59	37,2	268,8173	1,6255	1,6120
C0	D0	00	04	37,4	89	57	07,0	298,5147	1,6585	1,5840
C0	ST10	34	12	54,1	90	00	26,1	360,4915	1,6585	0,2369
C0	ST8	64	07	46,4	90	03	27,6	224,8252	1,6585	0,2417
C0	ST6	116	46	33,1	90	06	01,8	226,2366	1,6585	0,2377
C0	ST4	146	15	43,4	90	05	28,8	363,0155	1,6585	0,2381
C0	B0	180	05	05,1	90	07	32,2	400,4911	1,6585	1,6255
D0	ST10	00	11	44,1	90	05	02,1	202,2993	1,5840	0,2369
D0	ST8	44	52	09,5	90	05	50,7	284,4760	1,5840	0,2417
D0	<u>C</u> 0	<u>9</u> 0	09	23,5	90	03	8,6	298,5150	1,5840	1,6585

8.2. Računska obrada rezultata prve epohe mjerenja

Za prvu epohu mjerenja ponovljen je isti postupak obrade mjerenja kao za nultu epohu. Konačni podaci obrade geodetskih mjerenja prve epohe prikazani su u tablici 6.

OD	DO	Sredin	e horizo pravaca	ontalnih a	S z 1	Sredir enitn kutov	ne ih a	Sredine kosih duljina	Visina instrumenta	Visina prizme
		0	'	"	0	'	"	[m]	[m]	[m]
ST0	A1	167	43	52,4	89	59	40,7	203,7928	0,2347	1,5640
ST0	B1	214	46	06,5	90	00	29,4	362,5490	0,2347	1,5510
ST0	ST2	248	38	52,4	89	58	05,7	200,0037	0,2347	0,2353
ST2	ST0	150	24	33,3	90	02	06,2	200,0042	0,2351	0,2349
ST2	A1	200	34	51,8	90	01	17,6	262,0366	0,2351	1,5640
ST2	B1	266	57	36,9	90	02	29,0	225,9275	0,2351	1,5510
ST2	ST4	330	22	56,9	89	56	54,7	200,0086	0,2351	0,2356
ST4	ST2	10	21	05,7	90	03	18,8	200,0088	0,2354	0,2353
ST4	B1	74	15	52,0	90	05	20,8	224,9685	0,2354	1,5510
ST4	C1	156	31	28,2	89	55	18,0	363,0135	0,2354	1,6050
ST4	ST6	190	21	57,6	89	57	11,3	199,9588	0,2354	0,2372
ST6	ST4	321	18	05,0	90	03	09,1	199,9591	0,2370	0,2356
ST6	B1	355	21	07,4	90	05	03,9	360,8002	0,2370	1,5510
ST6	C1	77	58	27,4	89	54	53,0	226,2362	0,2370	1,6050
ST6	ST8	141	17	24,0	89	57	06,2	200,0179	0,2370	0,2411
ST8	ST6	16	04	38,3	90	03	10,2	200,0184	0,2409	0,2372
ST8	C1	80	06	56,0	89	57	34,1	224,8310	0,2409	1,6050
ST8	D1	150	46	50,4	89	54	33,5	284,4977	0,2409	1,5615
ST8	ST10	196	06	10,8	89	56	53,8	200,0071	0,2409	0,2364
ST10	ST8	36	32	36,8	90	03	20,9	200,0072	0,2362	0,2411
ST10	C1	70	38	27,6	90	00	18,8	360,5007	0,2362	1,6050
ST10	D1	126	33	05,1	89	55	28,9	202,2996	0,2362	1,5615
A1	B1	260	49	44,5	90	0	57,5	268,8225	1,5640	1,5510
A1	ST2	311	11	7,8	89	58	50,5	262,0369	1,5640	0,2353
A1	ST0	00	05	48,6	90	00	26,2	203,7928	1,5640	0,2349
B1	C1	140	36	02,0	89	52	45,1	400,4908	1,5510	1,6050
B1	ST6	174	40	13,4	89	55	11,7	360,7999	1,5510	0,2372
B1	ST4	204	31	06,8	89	54	46,0	224,9681	1,5510	0,2356
B1	ST2	257	10	58,5	89	57	37,0	225,9273	1,5510	0,2353
B1	ST0	286	45	07,0	89	59	44,6	362,5489	1,5510	0,2349
B1	A1	320	26	46,8	89	59	16,1	268,8222	1,5510	1,5640
C1	D1	44	16	19,8	89	56	44,7	298,5538	1,6050	1,5615
C1	ST10	78	24	32,2	89	59	52,6	360,5003	1,6050	0,2364
C1	ST8	108	19	19,9	90	02	35,9	224,8309	1,6050	0,2411

Tablica 6. Podaci obrade mjerenja prve epohe.

OD	DO	Sredin	e horizo pravaca	ontalnih 1	S z l	Sredir enitn cutov	ne ih a	Sredine kosih duljina	Visina instrumenta	Visina prizme
		0	,	"	0	'	"	[m]	[m]	[m]
C1	ST6	160	58	6,8	90	05	14,3	226,2357	1,6050	0,2372
C1	ST4	190	27	14,7	90	04	57,7	363,0135	1,6050	0,2356
C1	B1	224	16	34,0	90	07	35,0	400,4908	1,6050	1,5510
D1	ST10	321	51	15,1	90	04	38,8	202,2992	1,5615	0,2364
D1	ST8	06	31	27,4	90	05	35,9	284,4981	1,5615	0,2411
D1	C1	51	48	27,5	90	03	28,8	298,5539	1,5615	1,6050

8.3. Određivanje približnih nepoznanica u lokalnom koordinatnom sustavu

Za potrebe određivanja približnih vrijednosti nepoznanica, primijenjen je lokalni koordinatni sustav. Lokalni koordinatni sustav ostvaren je na način da je stup ST0 uzet kao ishodište s koordinatama (y, x, H) = (10000, 10000, 1000). Os y definirana je pravcem ST2 – ST0, a os x okomita je na os y. (slika 21).

Slika 21. Ishodište i orijentacija lokalnoga koordinatnog sustava.

Budući da su poznati horizontalni pravci, zenitni kutovi i horizontalne duljine, moguće je izračunati sve koordinate točaka geodetske osnove u lokalnom koordinatnom sustavu (tablica 7).

Tablica 7. Približne vrijednosti nepoznanica.

Tažlra	у	x	Н
Тоска	[m]	[m]	[m]
ST0	10000,000	10000,000	1000,000
ST2	9799,996	10000,000	1000,110
ST4	9599,992	9999,907	1000,289
ST6	9400,033	9999,864	1000,451
ST8	9200,015	9999,782	1000,610
ST10	9000,011	9999,796	1000,798
А	9967,827	9798,763	998,690
В	9699,013	9797,903	998,624
С	9298,524	9797,681	999,416
D	8999,970	9797,494	999,742

9. IZJEDNAČENJE GEODETSKE MREŽE

Izjednačenje geodetske mreže obavljeno je primjenom softvera JAG3D. Svaka od dviju epoha mjerenja zasebno je izjednačena u svrhu otkrivanja eventualnih grubih pogrešaka mjerenja. Za približne vrijednosti nepoznanica uzete su koordinate u lokalnom koordinatnom sustavu (tablica 7). Obje epohe izjednačene su na način da je definiran optimalni datum, odnosno sve točke geodetske mreže sudjelovale su u izjednačenju. Rezultati izjednačenja prikazani su u poglavljima 9.1 i 9.2.

9.1. Rezultati izjednačenja mjerenja nulte epohe

U tablici 8 prikazani su rezultati izjednačenja nulte epohe mjerenja te pripadajuće ocjene točnosti.

Tožka	У	x	Н	σ_y	σ_{x}	$\sigma_{\scriptscriptstyle H}$
Тоска	[m]	[m]	[m]	[mm]	[mm]	[mm]
ST0	10000,0032	10000,0049	999,9783	0,31	0,32	1,83
ST2	9799,9981	10000,0023	1000,0949	0,23	0,23	1,58
ST4	9599,9885	9999,9092	1000,2857	0,17	0,33	1,41
ST6	9400,0307	9999,8685	1000,4581	0,18	0,36	1,36
ST8	9200,0118	9999,7844	1000,8147	0,31	0,30	1,93
ST10	9000,0050	9999,7920	1000,6255	0,23	0,23	1,51
A0	9967,8217	9798,7531	998,6697	0,27	0,26	1,83
B0	9699,0055	9797,8966	998,6121	0,17	0,27	1,32
C0	9298,5157	9797,6866	999,4285	0,16	0,27	1,34
D0	9000,0010	9797,4924	999,7624	0,26	0,29	1,88

Tablica 8. Izjednačene koordinate geodetskih točaka nulte epohe i pripadajuće ocjene točnosti.

Na slici 22 nalazi se grafički prikaz geodetske mreže s pripadajućim elipsama položajne točnosti. Detaljni prikaz i rezultati analize izjednačenja nulte epohe mjerenja dani su u prilogu 1.

Slika 22. Elipse pogrešaka izjednačenih koordinata točaka nulte epohe mjerenja.

9.2. Rezultati izjednačenja mjerenja prve epohe

U tablici 9 prikazani su rezultati izjednačenja prve epohe mjerenja te pripadajuće ocjene točnosti.

Tažlra	У	x	Н	σ_{y}	σ_{x}	$\sigma_{\scriptscriptstyle H}$
Тоска	[m]	[m]	[m]	[mm]	[mm]	[mm]
ST0	10000,0036	10000,0021	999,9787	0,29	0,30	1,29
ST2	9799,9998	10000,0004	1000,0954	0,22	0,21	1,10
ST4	9599,9913	9999,9045	1000,2819	0,16	0,32	1,12
ST6	9400,0329	9999,8630	1000,4524	0,16	0,32	1,12
ST8	9200,0148	9999,7830	1000,6250	0,22	0,22	1,10
ST10	9000,0077	9999,7952	1000,8172	0,28	0,28	1,29
A1	9967,8317	9798,7649	998,6726	0,24	0,25	1,29
B1	9699,0108	9797,9004	998,6199	0,15	0,25	0,96
C1	9298,5211	9797,6804	999,4255	0,15	0,25	0,96
D1	8999,9676	9797,4961	999,7615	0,24	0,27	1,34

Tablica 9. Izjednačene koordinate točaka prve epohe i pripadajuće ocjene točnosti.

Na slici 23 nalazi se grafički prikaz geodetske mreže s pripadajućim elipsama položajne točnosti. Detaljan prikaz i rezultati analize izjednačenja prve epohe mjerenja dani su u prilogu 2.

Slika 23. Elipse pogrešaka izjednačenih koordinata točaka prve epohe mjerenja.

10. REZULTATI DEFORMACIJSKE ANALIZE

Nakon obavljenog izjednačenja za obje epohe mjerenja, pristupilo se deformacijskoj analizi, odnosno statističkoj usporedbi podataka mjerenja i određivanja pomaka geodetskih stupova. Mjerenja nulte i prve epohe ponovno su izjednačena, no ovaj put na način da su stupovi ST0 i ST10 fiksirani, odnosno njihove koordinate uzete su kao fiksne i nisu mijenjane u procesu izjednačenja. U slučaju kada koordinate stupova ST0 i ST10 nisu fiksirane, pomake ostalih stupova nije moguće kvalitetno odrediti zbog oblika geodetske mreže. Pomaci dopunskih točaka tijekom provođenja deformacijske analize nisu praćeni. Također, kao približne vrijednosti nepoznanica uzete su izjednačene koordinate točaka iz prethodnih izjednačenja (tablica 8 i tablica 9). Iz tablice 10 i slike 24 jasno je vidljivo da se jedini značajni pomak dogodio na geodetskom stupu ST6. Statističkim testiranjima jasno je određeno da ovaj geodetski stup nije ostao stabilan između dviju epoha mjerenja.

Točka	δy	δx	δΗ	Stabilnost
Тоска	[mm]	[mm]	[mm]	Staoimost
ST2	0,9	0,1	-0,9	stabilna
ST4	1,3	-3,8	-3,3	stabilna
ST6	0,6	-6,2	-5,7	nestabilna
ST8	1,0	-3,2	-1,4	stabilna

Tablica 10. 3D pomaci geodetskih stupova.

Na slici 24 nalazi se grafički prikaz pomaka geodetskih stupova u horizontalnom smislu, dok slika 25 prikazuje pomake stupova u visinskom smislu. Detaljan prikaz i rezultati deformacijske analize dani su u prilogu 3.

Slika 24. Horizontalni pomaci stupova.

Slika 25. Uzdužni profil s vertikalnim pomacima stupova.

11. ZAKLJUČAK

Signifikantni pomak u pravilu se ocjenjuje i kvalificira kao deformacija topografske površine ili izgrađenog objekta. Deformacijska analiza pruža važna fundamentalna i primijenjena znanja o topografskoj površini i izgrađenim objektima koji su predmet od interesa. Najvažniji izazov deformacijske analize jest definicija matematičkog objektiviziranja donošenja zaključka o signifikantnosti pomaka i deformacije te problem interdisciplinarne analize deformacije, odnosno određivanja što je uzrok, a što posljedica određene deformacije. Najpoznatije metode deformacijske analize jesu: Hannover, Delft, Karlsruhe, Fredericton i München. Osim spomenutih metoda, na našem se području često primjenjuju deformacijske analize prema metodama Ašanina i Mihajlovića.

Glavni cilj ovog rada jest odrediti stabilnost izabranih geodetskih stupova na kalibracijskoj bazi Geodetskog fakulteta Sveučilišta u Zagrebu između dviju epoha mjerenja. Precizna geodetska mjerenja detaljno su planirana te provedena u rujnu 2023. i veljači 2024. Svi rezultati mjerenja detaljno su obrađeni te su izrađeni svi potrebni prikazi u svrhu razumijevanja procesa određivanja pomaka stupova kalibracijske baze i provođenja deformacijske analize.

Na stupu ST2 određen je pomak po osi *y* u iznosu 0,9 mm, po osi *x* pomak iznosi 0,1 mm te po osi *H* iznosi -0,9 mm. Za stup ST4 određen je pomak po osi *y* u iznosu 1,3 mm, po osi *x* je -3,8 mm i po osi *H* je -3,3 mm. Na stupu ST8 određen je pomak po osi *y* u iznosu 1,0 mm, po osi *x* vrijednosti iznosi -3,2 mm, a po osi *H* u iznosu -1,4 mm. Primjenom statističkog testiranja te uz upotrebu različitih geodetskih i matematičkih metoda dolazi se do zaključka da su geodetski stupovi ST2, ST4 i ST8 stabilni između dviju epoha mjerenja. Za stup ST6 zaključeno je da je nestabilan između dviju epoha mjerenja. Za navedeni stup određen je pomak 0,6 mm po osi *y*, odnosno -6,2 mm po osi *x* i -5,7 mm po osi *H*. Ovo je statistički gledano značajan pomak u geodetskoj mreži te se geodetski stup ST6 može proglasiti nestabilnim. Rezultati provedene deformacijske analize nalaze se u prilozima ovoga rada.

Kalibracijska baza Geodetskog fakulteta Sveučilišta u Zagrebu namijenjena je umjeravanju geodetskih mjernih instrumenata i obavljanju različitih preciznih geodetskih mjerenja. Budući da je detektiran pomak jednog stupa kalibracijske baze preko dopuštene vrijednosti, potrebno je pratiti stupove kalibracijske baze u dužem vremenskom razdoblju te na temelju tih opažanja donijeti zaključke o stabilnosti stupova na kalibracijskoj bazi.

12. ZAHVALA

Zahvaljujem mentoru prof. dr. sc. Mladenu Zrinjskom na odvojenom vremenu i svim stručnim savjetima u procesu izrade ovog rada, ali jednako tako i na svim stručnim savjetima za vrijeme mog studiranja na Geodetskom fakultetu.

Zahvaljujem asistentu Krunoslavu Špoljaru, mag. ing. geod. et geoinf., dr. sc. Antoniu Tupeku te asistentu Jurici Jagetiću, mag. ing. geod. et geoinf., na svakom stručnom savjetu, ideji i pomoći. Zahvaljujem se na svom uloženom trudu i vremenu, da bi ovaj rad poprimio svoj konačan oblik.

Zahvaljujem djevojci Dorotei i obitelji koji su mi bili neizmjerna podrška pri izradi ovog rada, ali i u cijelom procesu moga studiranja.

13. LITERATURA

- Barković, Đ., Zrinjski, M. (2020): Terenska mjerenja, sveučilišni priručnik, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.
- Barković, Đ., Zrinjski, M., Baričević, S. (2016): Automatizacija ispitivanja preciznosti elektrooptičkih daljinomjera na kalibracijskoj bazi, Geodetski list, 70 (93), 4, 311–336.
- Benčić, D., Solarić, N. (2008): Mjerni instrumenti i sustavi u geodeziji i geoinformatici, Školska knjiga, Zagreb.
- Deumlich, F., Staiger, R. (2002): Instrumentenkunde der Vermessungstechnik, 9. völlig neu bearbeitete und erweiterte Auflage, Herbert Wichmann Verlag, Heidelberg.
- Feil, L. (1989): Teorija pogrešaka i račun izjednačenja prvi dio, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.
- Ihde, J., Reinhold, A. (2017): Friedrich Robert Helmert, founder of modern geodesy, on the occasion of the centenary of his death, History of Geo- and Space Sciences, Helmholtz Centre Potsdam – German Research Centre for Geosciences (GFZ) Telegrafenberg, 14473 Potsdam, Germany, 8, 79–95.
- Kapović, Z. (2010): Geodezija u niskogradnji, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.
- Kapović, Z., Marendić, A., Paar, R. (2006): Deformation Analysis of the Holcim Ltd. Cement Factory Objects, Proceedings, XXIII. International FIG Congress, October 8–13, 2006, Munich, Germany, International Federation of Surveyors, 1–15.
- Lehmann, R., Lösler, M. (2017): Congruence analysis of geodetic networks hypothesis tests versus model selection by information criteria, J. Appl. Geodesy, 11, 4, 271–283.
- Lösler, M., Eschelbach, C., Haas, R. (2017): Kongruenzanalyse auf der Basis originärer Beobachtungen, Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 142, 1, 41–52.
- Macarol, S. (1985): Praktična geodezija, Tehnička knjiga, Zagreb.
- Rožić, N. (1992): Izjednačenje geodetskih mreža s dodatnim fiktivnim mjerenjima, Geodetski list, 46 (69), 1, 49–60.
- Rožić, N., Razumović, I. (2024): Geodezija i geokinematika, sveučilišni priručnik, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.

- Solarić, N., Solarić, M., Benčić, D. (1992): Projekt i izgradnja kalibracijske baze Geodetskog fakulteta Sveučilišta u Zagrebu, Geodetski list, 46 (69), 1, 7–25.
- Solarić, N., Barković, Đ., Zrinjski, M. (2012): Automatizacija mjerenja atmosferskih parametara pri preciznom mjerenju duljina, Geodetski list, 66 (89), 3, 165–186.
- Torge, W. (1991): Geodesy, Second edition, Institut für Erdmessung, Universität Hannover, Hannover, Germany.
- Welsch, W. M., Heunecke, O. (2001): Models and Terminology for the Analysis of Geodetic Monitoring Observations, Official Report of the Ad-Hoc Committee of FIG Working Group 6.1, International Federation of Surveyors, Frederiksberg, Denmark.
- Zrinjski, M. (2010): Definiranje mjerila kalibracijske baze Geodetskog fakulteta primjenom preciznog elektrooptičkog daljinomjera i GPS-a, doktorska disertacija, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.
- Zrinjski, M., Barković, Đ., Kapustić, M. (2011): Determination of Pillar Coordinates at the Calibration Baseline of the Faculty of Geodesy in Zagreb by Applying GPS, Conference Proceedings, Volume II – 11th International Multidisciplinary Scientific GeoConference SGEM 2011, International Multidisciplinary Scientific GeoConference SGEM (Ed.), Sofia, 239–246.
- Zrinjski, M., Tupek, A., Barković, D., Cesarec, M. (2021): Stability Analysis of a Levelling Network as a Prelude to a Residential Building Construction, Conference Proceedings, 8th International Conference Contemporary Achievements in Civil Engineering, University of Novi Sad – Faculty of Civil Engineering, Subotica, 79–89.
- Zrinjski, M., Barković, Đ., Špoljar, K. (2022a): Pregled metoda preciznog umjeravanja kalibracijskih baza, Geodetski list, 76 (99), 1, 25–52.
- Zrinjski, M., Špoljar, K., Barković, Đ., Baričević, S., Tupek, A. (2022b): 40 godina kalibracijske baze Geodetskog fakulteta Sveučilišta u Zagrebu, Zbornik radova – 15. simpozij ovlaštenih inženjera geodezije, Hrvatska komora ovlaštenih inženjera geodezije, Zagreb, 97–102.
- Zrinjski, M., Redovniković, L., Tupek, A., Špoljar, K., Družeić, L., Jagetić, J. (2024): Izmjera zemljišta, interna skripta za vježbe, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.

Mrežne adrese

URL 1: Leica TC2003,

https://leica-geosystems.com/products/total-stations,

(19. 1. 2024.).

URL 2: Lufft XA1000,

https://www.lufft.com/products/discontinued-products,

(6. 2. 2024.).

URL 3: Leica pribor,

https://leica-geosystems.com/products/total-stations/accessories,

(20. 1. 2024.).

URL 4: Java Applied Geodesy 3D,

http://software.applied-geodesy.org/en/,

(27. 1. 2024.).

14. POPIS SLIKA

Slika 1. Kalibracijska baza Geodetskog fakulteta Sveučilišta u Zagrebu (Zrinjski 2010)	. 4
Slika 2. Shema stabilizacije stupova kalibracijske baze (Solarić i dr. 1992)	. 5
Slika 3. Prikaz međusobne udaljenosti geodetskih stupova (Zrinjski i dr. 2022b)	. 5
Slika 4. Položaj stupova kalibracijske baze	. 7
Slika 5. Uzdužni profil kalibracijske baze (Solarić i dr. 1992)	. 8
Slika 6. Putanja svjetlosnog signala (Benčić i Solarić 2008)	12
Slika 7. Trigonometrijsko određivanje visinske razlike (Zrinjski i dr. 2024)	13
Slika 8. Skica konfiguracije geodetske mreže na kalibracijskoj bazi	16
Slika 9. Precizna geodetska mjerna stanica i uređaj za mjerenje atmosferskih parametara	16
Slika 10. Stativ Leica GST20 (lijevo) i podnožna ploča Leica GDF322 (desno) (URL 3) 1	18
Slika 11. Adapter Leica GRT144 (lijevo) i prizma Leica GPH1 (desno) (URL 3)	18
Slika 12. Mjerni uređaj Leica GHM007 (lijevo) i adapter Leica GHT196 (desno) (URL 3) 1	19
Slika 13. Apsolutna geodetska mreža za praćenje pomaka i deformacija (Kapović 2010)2	22
Slika 14. Betonski stupovi na kalibracijskoj bazi	30
Slika 15. Stabilizacija dopunskih točaka geodetske mreže	31
Slika 16. Veličine a i b izmjerene na podnožnim pločama.	32
Slika 17. Veličine c za geodetsku mjernu stanicu i preciznu prizmu	32
Slika 18. Određivanje dubina podnožnih ploča	33
Slika 19. Prizma postavljena na geodetski stup (lijevo) i stativ (desno)	34
Slika 20. Leica TC2003 postavljena na geodetski stup (lijevo) i stativ (desno)	35
Slika 21. Ishodište i orijentacija lokalnoga koordinatnog sustava	40
Slika 22. Elipse pogrešaka izjednačenih koordinata točaka nulte epohe mjerenja	43
Slika 23. Elipse pogrešaka izjednačenih koordinata točaka prve epohe mjerenja	15
Slika 24. Horizontalni pomaci stupova.	17
Slika 25. Uzdužni profil s vertikalnim pomacima stupova.	18

15. POPIS TABLICA

Tablica 1. Raspored stupova kalibracijske baze Geodetskog fakulteta Sveučilišta u Zagrebu
(prema Zrinjski i dr. 2022a)
Tablica 2. Utjecaj Zemljine zakrivljenosti na mjerenu visinsku razliku (Macarol 1985) 14
Tablica 3. Tehničke karakteristike geodetske mjerene stanice Leica TC2003 (URL 1) 17
Tablica 4. Tehničke karakteristike uređaja za mjerenje atmosferskih parametara Lufft XA1000
(URL 2)
Tablica 5. Podaci obrade mjerenja nulte epohe
Tablica 6. Podaci obrade mjerenja prve epohe
Tablica 7. Približne vrijednosti nepoznanica. 41
Tablica 8. Izjednačene koordinate geodetskih točaka nulte epohe i pripadajuće ocjene točnosti.
Tablica 9. Izjednačene koordinate točaka prve epohe i pripadajuće ocjene točnosti
Tablica 10. 3D pomaci geodetskih stupova

16. SAŽETAK

Određivanje 3D pomaka stupova i deformacijska analiza kalibracijske baze Geodetskog fakulteta Sveučilišta u Zagrebu

Karlo Stipetić

Deformacijska analiza pruža važna teorijska i primijenjena znanja o topografskoj površini i izgrađenim objektima koji su predmet od interesa. U radu su izloženi rezultati određivanja 3D pomaka geodetskih stupova i deformacijske analize kalibracijske baze Geodetskog fakulteta Sveučilišta u Zagrebu. Mjerenja u svrhu određivanja pomaka i deformacija obavljena su u rujnu 2023. i veljači 2024., metodom terestričke geodetske izmjere. Definirana je konfiguracija geodetske mreže za posebne namjene, koja se sastoji od deset geodetskih točaka, pri čemu su šest točaka betonski stupovi te četiri dopunske točke od kojih su dvije stabilizirane pomoću bolcni, a dvije pomoću betonskih stupića u razini terena. Pomaci geodetskih stupova kalibracijske baze određeni su u lokalnom koordinatnom sustavu uz pripadna standardna odstupanja. Obrada mjerenja provedena je primjenom softvera Microsoft Excel, a izjednačenje geodetske mreže i deformacijska analiza obavljeni su primjenom softvera JAG3D. Primijenjeni postupak i svi rezultati detaljno su objašnjeni te prikazani u numeričkom i grafičkom obliku.

Ključne riječi: geodetski stupovi, kalibracijska baza, geodetska mreža za posebne namjene, pomak, deformacijska analiza.

17. SUMMARY

Determination of 3D Displacements of Pillars and Deformation Analysis of the

Calibration Baseline of the Faculty of Geodesy, University of Zagreb

Karlo Stipetić

Deformation analysis provides important theoretical and applied knowledge about the topographic surface and built objects that are of interest. This paper presents the results of determination 3D displacements of geodetic pillars and the deformation analysis of the calibration baseline of the Faculty of Geodesy, University of Zagreb. Measurements for determination of displacements and deformations were conducted in september 2023. and february 2024., using the terrestrial surveying method. The configuration of geodetic network for special purpose was defined, consisting of ten surveying points, six of which are concrete pillars, and four additional points, two stabilized using bolts and two as ground-level concrete pillars. Displacements of the geodetic pillars of the calibration baseline were determined in the local coordinate system along with their respective standard deviations. Data processing was performed using Microsoft Excel software and adjustment of geodetic network and deformation analysis were carried out using JAG3D software. Applied procedure and all results are thoroughly explained and presented in numerical and graphical form .

Keywords: geodetic pillars, calibration baseline, geodetic network for special purpose, displacement, deformation analysis.

18. ŽIVOTOPIS

Karlo Stipetić rođen je 30. rujna 1999. u Ogulinu. Osnovnu školu pohađa u Prvoj osnovnoj školi Ogulin. Upisuje se 2014. godine u Gimnaziju Bernardina Frankopana Ogulin, a istu završava 2018. godine, nakon čega upisuje preddiplomski sveučilišni studij Geodezije i geoinformatike na Geodetskom fakultetu Sveučilišta u Zagrebu. Preddiplomski studij završava 2022. godine, kada se upisuje na diplomski sveučilišni studij Geodezije i geoinformatike, usmjerenje Geodezija, na Geodetskom fakultetu. Znanje naučeno na Fakultetu upotpunjuje radom u struci kao demonstrator u nastavi na Geodetskom fakultetu, prethodnim radom u geodetskoj tvrtki Geo ING d.o.o. u Ogulinu te trenutnim radom u geodetskoj tvrtki Cadcom d.o.o. u Zagrebu. Interesiraju ga brojna područja geodezije, no najviše inženjerska geodezija. Od osobnih vještina može istaknuti znanje i iskustvo rada u CAD i GIS softverima, kao i raznim softverima vezanim uz obradu LiDAR podataka poput GOposta. Također, izvrsno se snalazi u radu sa softverima za obradu teksta i podataka, poput Microsoft Worda i Microsoft Excela.

19. POPIS PRILOGA

Prilog 1. Izjednačenje nulte epohe mjerenja

Prilog 2. Izjednačenje prve epohe mjerenja

Prilog 3. Deformacijska analiza

Prilog 1. Izjednačenje nulte epohe mjerenja

Java·Applied·Geodesy·3D - Report

Least-Squares Adjustment & Deformation Analysis

Project JAG3D Version: Name of Project: Project Id: Customer Id: Person in Charge: Date of Calculation: Date of Report: Kind of network: Adjustment Type: Coordinate frame: Probability Value α: Test Power (1-β): Description:

 $\begin{array}{l} 2024-03-11\\ 2024-03-14\\ free Network (t_{Y}, t_{Y}, t_{Z}, r_{Z})\\ Least squares adjustment (L_{Z}Norm)\\ Local Cartesian model\\ e Earth radius: R_{0}=6371007.0000 m\\ \bullet \ \ Earth's curvature reduction\\ 5.00 \%\\ 80.00 \% \end{array}$

B-Method (Baarda)

q (F _{d1,d2,1-a})	11.49	3.84	3.83	3.82	3.05	2.52	1.86	1.03	1.02	1.01	1.00	1.00	1.00	1.00		
log(p _{d1,d2})	-4.25	-3.00	-2.91	-2.91	-2.70	-2.44	-2.00	-0.86	-0.84	-0.80	-0.78	-0.76	-0.76	-0.52		
λ (α,β)	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85		
$(1 - \beta)$ in %	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00		0
a % ni	1.43	5.00	5.43	5.43	6.70	8.67	13.47	42.13	43.18	44.88	46.00	46.62	46.78	59.65		-
dZ	8	8	74.00	73.00	8	8	8	8	8	8	8	8	8	8		1
d1	0.28	1.00	1.00	1.00	1.36	1.80	3.00	20.01	21.37	23.83	25.63	26.72	27.00	74.00		
															-	

Test statistics \varPhi^{-I} w.r.t. the degree of freedom $d\imath$ and d2, respectively

Group name	рU	ŋ	$\Omega_{\rm G}$	$1:\sigma^2_G$	q $(F_{\Gamma,\infty,1-d})$	$T_G \leq q \mid H_0$
Total Adjustment	111	74.00	40.46	0.55	1.00	>
Directions	37	25.63	14.51	0.57	1.00	>
Directions σ_a	37	23,83	13.45	0.56	1.01	>
Directions σ_c	37	1.80	1.05	0.58	2.52	>
Slope Distances	37	21.37	10.23	0.48	1.02	>
Slope Distances σ_a	37	20.01	9.66	0.48	1.03	>
Slope Distances σ_c	37	1.36	0.57	0.42	3.05	>
Zenith Angles	37	27.00	15.72	0.58	1.00	>
Zenith Angles σ _a	37	26.72	15.54	0.58	1.00	>
Zenith Angles σ _c	37	0.28	0.18	0.63	11.49	>

Variance Component Estimation

Principal component analysis

k ^VΛ(k) Λ(k)/trace(Cxx) in ⁹⁶ 30 3.7 48.74

Principal component analysis

Datum Points: Datum_points_Eo

No 1000.0000 1000.	Point-Id	Code	East y0 in m	North x0 in m	Height z0 in m	East y in m	North x in m	Height z in m	ay in mm	σ _X in mm	σ _z in mm	a in mm	b mm ii	in mm	° ci	G ci	≻ °	∆ _y in mm	∆ _X in mm	$\Delta_{\rm Z}$ in mm	Sy in mm	S _X in mm	Sz in mn	
5120 9799.996010000.00001000.11009799.998110000.00009799.998110000.00009799.998110000.00009799.998110000.000010000.00009799.9986510000.28909599.988510000.28909599.986510000.28909599.986510000.28909599.986510000.28909599.986510000.28909599.986510000.28909599.868510000.28909599.868510000.28909599.868510000.28909599.868510000.28009599.868510000.45109400.03079999.868510000.45109400.03079999.86851000.45109400.03079999.86851000.45210.180.180.130.150.55269.935146.68627270.041612.34.57.10.00.0 510 9990.78209990.78009999.78441000.62550.120.130.141.150.56269.935146.68627270.041612.34.57.10.00.00.0 510 9990.79209990.79201000.45109999.78441000.62550.120.130.140.150.56269.935146.68627270.041612.32.41570.00.00.00.0 610 9990.79209990.78219190.45219100.010109990.79219990.78219110.170.211.30.120.131.31.31.31.31.31.31.31.31.31.31.31.31.31.31.31.3 <th< th=""><th>STO</th><th>0</th><th>10000.0000</th><th>10000.0000</th><th>1000.0000</th><th>10000.0032</th><th>10000.0049</th><th>999,9783</th><th>0.31</th><th>0.32</th><th>1.83</th><th>5.84</th><th>1.24</th><th>0.68</th><th>89.95122</th><th>317.34420</th><th>89.99204</th><th>3.2</th><th>4.9</th><th>-21.7</th><th>0.0</th><th>0.0</th><th>1.5</th><th></th></th<>	STO	0	10000.0000	10000.0000	1000.0000	10000.0032	10000.0049	999,9783	0.31	0.32	1.83	5.84	1.24	0.68	89.95122	317.34420	89.99204	3.2	4.9	-21.7	0.0	0.0	1.5	
No 9599:970 9699:9070 1000.2890 9599:9853 1000.2895 999.98655 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 1000.2895 115 125 269.93514 6.68627 270.04161 2.2 2.3 2.1 100 100 200 <	ST2	0	9799.9960	10000.0000	1000.1100	9799.9981	10000.0023	1000.0949	0.23	0.23	1.58	5.05	0.82	0.64	269.94181	312.84379	269.99108	2.1	2.3	-15.1	0.0	-0.0	1.3	
No 9400.0330 9999.8640 1000.4510 9400.0307 9999.8685 1000.4581 0.18 0.3 1.3 0.56 269.93514 6.68627 270.04161 -2.3 4.5 7.1 -0.0 -0.0 ST10 0 9200.0110 9999.7820 1000.4510 9999.7844 1000.6255 0.23 1.51 4.82 0.83 0.93073 312.04393 269.94326 -3.2 2.4 15.5 -0.0 <	ST4	0	9599.9920	0206.9666	1000.2890	9599.9885	9999.9092	1000.2857	0.17	0.33	1.41	4.50	1.06	0.54	269.93370	356.31032	89.98631	-3.5	2.2	с. С.	0.0	-0.0	0.4	
518 0 9200.0150 9999.7820 1000.6100 9299.7844 1000.6255 0.23 1.51 4.82 0.63 89.90793 121.04393 269.94326 -3.2 2.4 15.5 -0.0<	ST6	0	9400.0330	9999.8640	1000.4510	9400.0307	9999.8685	1000.4581	0.18	0.36	1.36	4.34	1.15	0.56	269.93514	6.68627	270.04161	-2.3	4.5	7.1	-0.0	-0.0	-0.6	
STI0 0 9000.0110 9999.7960 1000.7980 9999.7920 1000.8147 0.31 0.31 0.3 1.19 0.70 89.95602 45.81707 89.96818 -6.0 -4.0 16.7 -0.0 0.0 0.0 1 A0 0 9967.8270 9798.7630 998.6597 0.27 0.27 0.26 1.83 5.84 0.99 0.6666 46.50580 89.99105 -5.3 -9.9 -20.3 0.0 0.0 1.0 1.0 1.0 0.70 89.96966 46.50580 89.99105 -5.3 -9.9 -20.3 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0	ST8	0	9200.0150	9999.7820	1000.6100	9200.0118	9999.7844	1000.6255	0.23	0.23	1.51	4.82	0.83	0.63	89.90793	312.04393	269.94326	-3.2	2.4	15.5	-0.0	-0.0	-1	
A0 0 9967.8270 9798.7630 998.6900 967.8217 9798.7531 998.6697 0.27 0.26 1.83 5.84 0.99 0.68 89.96966 46.50580 89.99105 -5.3 -9.9 -20.3 0.0 0.0 1 B0 0 9699.0130 97797.9030 998.6210 9797.8966 998.6121 0.17 0.27 1.32 4.21 0.87 0.51 89.92555 344.79844 270.05387 -7.5 -6.4 -11.9 0.0 -0.0 0 C0 0 9298.5130 9797.6866 999.4285 0.16 0.27 1.34 4.27 0.88 0.50 89.932412 -8.3 5.6 12.5 -0.0 -0.0 0 C0 0 9298.5127 9797.4924 999.74285 0.16 0.27 1.34 4.27 0.88 0.50 89.92151 11.34741 89.933412 -8.3 5.6 12.5 -0.0 -0.0 0 0 0 9.99.7497 89.93742 89.932412 89.3 89.4 -0.7 0.6 0.0 0 </th <th>ST10</th> <th>0</th> <th>9000.0110</th> <th>9999.7960</th> <th>1000.7980</th> <th>9000.0050</th> <th>9999.7920</th> <th>1000.8147</th> <th>0.31</th> <th>0.30</th> <th>1.93</th> <th>6.17</th> <th>1.19</th> <th>0.70</th> <th>89.97602</th> <th>45.81707</th> <th>89.96818</th> <th>-6.0</th> <th>-4.0</th> <th>16.7</th> <th>-0.0</th> <th>0.0</th> <th>- T</th> <th></th>	ST10	0	9000.0110	9999.7960	1000.7980	9000.0050	9999.7920	1000.8147	0.31	0.30	1.93	6.17	1.19	0.70	89.97602	45.81707	89.96818	-6.0	-4.0	16.7	-0.0	0.0	- T	
B0 0 9699.0130 9797.9030 998.6240 9699.0055 9797.8966 998.6121 0.17 0.27 1.32 4.21 0.87 0.51 89.92555 344.79844 270.05387 -7.5 -6.4 -11.9 0.0 -0.0 (C0 0 9298.5240 9797.6810 999.4160 9298.5157 9797.6866 999.4285 0.16 0.27 1.34 4.27 0.88 0.50 89.92151 11.34741 89.93412 -8.3 5.6 12.5 -0.0 -0.0 - D0 0 8999.9702 9797.4941 999.7420 9000.0010 9797.4924 999.7624 0.26 1.88 5.99 1.05 0.67 269.90837 39.23972 90.02776 30.8 -17 20.4 -0.0 0.0 - D1 0 8999.9702 977.4941 999.7420 990.74924 999.7624 0.26 1.88 5.99 1.05 0.67 269.90837 39.23972 90.02776 30.4	AO	0	9967.8270	9798.7630	998.6900	9967.8217	9798.7531	998,6697	0.27	0.26	1.83	5.84	0.99	0.68	89,96966	46.50580	89,99105	-5.3	-9.9	-20.3	0.0	0.0	1.5	
C0 0 9298.5240 9797.6810 9298.5157 9797.6866 999.4285 0.16 0.27 1.34 4.27 0.88 0.50 89.92151 11.34741 89.93412 -8.3 5.6 12.5 -0.0 -0.0 - D0 0 8999.9702 9797.4941 999.7420 999.7624 0.26 0.29 1.88 5.99 1.05 0.67 269.90837 39.23972 90.02776 30.8 -1.7 20.4 -0.0 0.0 - D1 0 8999.9702 9797.4921 999.7624 0.26 0.29 1.88 5.99 1.05 0.67 269.90837 39.23972 90.02776 30.8 -1.7 20.4 -0.0 0.0 - 13 14 10 1.88 5.99 1.05 0.67 269.90837 39.23972 90.02776 30.8 -1.7 20.4 -0.0 0.0 - 13 13 14 10 1.88 5.99 1.05 0.67 269.90837 39.23972 90.02776 30.8 -9.9 -21.7 <	BO	0	9699.0130	9797.9030	998.6240	9699.0055	9797.8966	998.6121	0.17	0.27	1.32	4.21	0.87	0.51	89.92555	344.79844	270.05387	-7.5	-6.4	-11.9	0.0	-0.0	0.8	
D0 0 8999.9702 9797.4941 999.7420 9000.0010 9797.4924 999.7624 0.26 0.29 1.88 5.99 1.05 0.67 269.90837 39.23972 90.02776 30.8 -1.7 20.4 -0.0 0.0 - 30.8 -9.9 -21.7 20.4 -0.0 0.0 - 30.8 -9.9 -21.7 20.4 -0.0 0.0 - 30.8 -9.9 -21.7 20.8 -9.9 -21.7 - 0.0 -	CO	0	9298.5240	9797.6810	999.4160	9298.5157	9797.6866	999,4285	0.16	0.27	1.34	4.27	0.88	0.50	89.92151	11.34741	89.93412	-8.3	5.6	12.5	-0.0	-0.0	-0.8	
30.8 -9.9 -21.7	DO	0	8999.9702	9797.4941	999.7420	9000.0010	9797.4924	999.7624	0.26	0.29	1.88	5.99	1.05	0.67	269.90837	39.23972	90.02776	30.8	-1.7	20.4	-0.0	0.0	÷.	
																		30.8	-9.9	-21.7)

Directions: 1	Directions_s	et_Eo (STc	((
Station -Id	Target-Id	ri ⁿ	th m	t0 in 。	a0 " "	i t	p "	in %	ώĽ	∆ ″i	EP in mm	n mm	∇(1) in "	∇(λ) in "	G	og(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
ST0	AO	0.2346	1.6120	180.73858	1.58	180.73819	0.70	64.43	-1.40	2.17	0.1	0.5	1.97	5.53	0.78	-1.30	-1.98	1.21	2.25	>
ST0	BO	0.2346	1.6255	227.77332	1.53	227.77329	0.68	63.62	-0.11	0.17	-0.0	0.0	1.91	5.36	0.00	-0.07	-0.10	0.01	0.01	>
ST0	ST2	0.2346	0.2350	261.65197	1.59	261.65239	0.70	64.53	1.52	-2.35	-0.1	0.5	-1.97	-5.53	0.92	-1.45	-2.23	1.42	2.65	>
								1.93	1.52	-2.35					1.70					>
Observation Grou	up: Directions_se	t_Eo (STo) (A-j	priori: $\sigma_a = 1.5$	0 ", $\sigma_c = 0.50 \text{ mm}$																

Station-Id	Target-Id	h n n	th in m	t0 °	a0 " ii	i o t	p "	in %	ώ́	in "	EP in m m	F.SP n mm	∇(1) in "	∇(λ) in "	С	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀	
ST2	ST0	0.2348	0.2348	0.07540	1.59	0.07506	0.71	63.26	-1.24	1.97	0.1	0.5	1.99	5.59	0.62	-1.13	-1.69	0.97	1.80	>	
ST2	AO	0.2348	1.6120	50.25064	1.55	50.25075	0.68	64.57	0.41	-0.63	-0.0	0.1	-1.93	-5.41	0.07	-0.30	-0.42	0.11	0.19	>	
ST2	BO	0.2348	1.6255	116.62693	1.57	116.62715	0.71	62.22	0.80	-1.28	-0.0	0.3	-1.99	-5.57	0.26	-0.66	-0.95	0.42	0.76	>	
								1.90	-1.24	1.97					0.94					>	
Observation Grou	in: Directions set	Eo (ST2) (A-1	$\alpha_{1} = 1.50$	0 ". σ. = 0.50 mm																	

N

	T ≤ q H ₀	>	~
	Tpost	0.01	
	Tprio	0.01	
	log(p _{post})	-0.08	
	log(p _{prio})	-0.06	
	G	00.00	1.88
	∇(λ) in "	-5.44	
	∇(1) in "	-1.94	
	EF-SP in mm	0.1	
	EP in mm	-0.0	
	∩ ″i	-0.14	-2.58
	ω	0.10	1.74
	r in %	66.71	2.77
	n "	0.68	
	i t	6.27758	
	σ0 " п	1.59	
	t0 °	6.27756	
(4)	in th	0.2350	
t_Eo (SI	i n	0.2379	
Directions_se	Target-Id	ST2	
Directions:	Station-Id	ST4	

			l																	
Station-Id	Target-Id	hi m	th n m	t0 °	a0 " ii	i t °	in "	r in %	ω "Li	∩ ″	EP in mm	EF.SP in mm	$\nabla(1)$ in "	$\nabla(\lambda)$ in "	G	log(p _{prio})	log(p _{post})	Tprio	post	Γ ≤ q H ₀
ST4	BO	0.2379	1.6255	70.19256	1.57	70.19237	0.61	72.01	-0.68	0.94	0.0	0.2	1.85	5.18	0.19	-0.49	-0.70	0.26	0.47	>
ST4	CO	0.2379	1.6585	152.45157	1.53	152.45127	0.61	70.67	-1.06	1.50	0.1	0.3	1.82	5.09	0.48	-0.90	-1.33	0.69	1.26	>
ST4	ST6	0.2379	0.2377	186.29214	1.59	186.29262	0.67	67.56 2.77	1.74	-2.58	-0.2	0.9	-1.93	-5.41	1.21	-1.71	-2.66	1.79	3.38	> >
Observation Gr	oup: Directions_se	t_Eo (ST4) (A	-priori: $\sigma_a = 1.5$	50 ", o _c = 0.50 mn																
Directions:	Directions_s	st_Eo (ST(5)																	
Station-Id	Target-Id	hi n	in m	t0 in °	a "	j, t	n "	r %	ε in "	⊳ " ri	EP	EF.SP in mm	∇(1) in "	$\nabla(\lambda)$ in "	C	log(p _{prio})	log(p _{post})	Tprio	post	r ≤ q H ₀
ST6	BO	0.2375	1.6255	34.14111	1.53	34.14100	0.72	59.44	-0.40	0.66	0.0	0.2	1.98	5.55	0.07	-0.31	-0.43	0.11	0.20	>
ST6	CO	0.2375	1.6585	116.76125	1.57	116.76118	0.68	65.34	-0.24	0.36	0.0	0.1	1.94	5.43	0.02	-0.16	-0.22	0.04	0.06	>
ST6	ST8	0.2375	0.2417	180.07578	1.59	180.07596	0.72	62.19	0.67	-1.08	-0.1	0.3	-2.01	-5.63	0.18	-0.52	-0.75	0.29	0.52	>
								1.87	0.67	-1.08					0.27					>
Observation Gr	oup: Directions_se:	t_Eo (ST6) (A	-priori: σ _a = 1.5	50 ", σ _c = 0.50 mn	0															
Directions:	Directions_s	et_Eo (ST8	3)																	
Station-Id	Target-Id	ri m	th in m	t0 in 。	o " "	in t	n "	r %	ε Ľ	∩ ″	EP in mm	EF.SP in mm	∇(1) in "	$\nabla(\lambda)$ in "	G	log(p _{prio})	log(p _{post})	Tprio	post	r ≤ q H ₀
ST8	ST6	0.2415	0.2377	0.11393	1.59	0.11367	0.67	67.29	-0.93	1.38	0.1	0.5	1.93	5.42	0.34	-0.74	-1.08	0.51	0.93	>
ST8	0	0.2415	1.6585	64.15317	1.57	64.15287	0.61	72.22	-1.08	1.50	0.0	0.3	1.85	5.17	0.48	-0.88	-1.29	0.66	1.21	>
ST8	DO	0.2415	1.5840	134.81271	1.54	134.81291	0.61	71.26	0.72	-1.02	-0.1	0.2	-1.83	-5.12	0.22	-0.55	-0.79	0.31	0.56	>
ST8	ST10	0.2415	0.2369	180.13960	1.59	180.13995	0.66	68.66 2.79	1.27	-1.85 -1.85	-0.2	0.6	-1.91	-5.36	0.64 1.68	-1.10	-1.64	0.93	1.72	> >

Observation Group: Directions_set_E0 (ST8) (A-priori: σ_a = 1.50 $'', \sigma_c$ = 0.50 mm)

Directions:	Directions_se	t_Eo (ST1	(0																	
Station-Id	Target-Id	Hi n	th m	t0 in °	a0 "	ii t	n "	in %	α ́ц	ni √	EP n mm	F.SP	ζ(1) in "	∇(λ) in "	G	og(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
ST10	ST8	0.2367	0.2417	0.13410	1.59	0.13387	0.83	50.38	-0.80	1.59	0.1	0.2	2.23	6.26	0.26	-0.74	-1.08	0.51	0.93	>
ST10	CO	0.2367	1.6585	34.23129	1.53	34.23150	0.82	46.69	0.74	-1.59	0.0	0.2	-2.23	-6.26	0.24	-0.74	-1.08	0.51	0.93	>
								0.97	-0.80	1.59					0.49					>
Observation Gro	oup: Directions_set_	_Eo (ST10) (A-	-priori: $\sigma_a = 1.5$	$0 ", \sigma_c = 0.50 \text{ m}$	n)															

Directions: Directions_set_Eo (A0)

Station-Id	Target-Id	ri n	th m	t0 in °	σ0 in "	л с	ü "	r in %	α " u	⊳ "ci	EP in mm	EF-SP in mm	∇(1) in "	$\nabla(\lambda)$ in "	С	log(p _{prio})	log(p _{post})	T _{prio}	Tpost	T ≤ q H ₀	
AO	BO	1.6120	1.6255	0.12006	1.55	0.12010	0.69	63.37	0.15	-0.23	-0.0	0.0	-1.94	-5.45	0.01	-0.10	-0.14	0.01	0.03	>	
AO	ST2	1.6120	0.2350	50.47738	1.55	50.47761	0.68	65.15	0.86	-1.33	-0.0	0.2	-1.92	-5.38	0.31	-0.71	-1.04	0.48	0.87	>	
AO	ST0	1.6120	0.2348	99.38801	1.58	99.38772	0.70	64.33	-1.05	1.64	0.1	0.4	1.97	5.53	0.44	-0.90	-1.33	0.69	1.27	~	
								1.93	-1.05	1.64					0.76					>	_
Ubservation Groi	up: Directions_set	Eo (Ao) (A-P	riori: $\sigma_{a} = 1.50$	°, o _c = 0.50 mm.																	
Station-Id	Target-Id	in in	th in m	t0 in °	σ0 in "	in c	in "	r %	ε ε ε	⊳ "	EP in mm	EF.SP in mm	∇(1) in "	∇(λ) in "	G	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀	
BO	CO	1.6255	1.6585	6.50885	1.52	6.50850	0.53	78.12	-1.24	1.59	0.1	0.4	1.72	4.82	0.66	-1.03	-1.54	0.85	1.56	>	

0.84 -1.06 -0.0 0.3 -1.72 -4.81 0.30 -0.62 - 0.35 -0.43 -0.0 0.1 -1.74 -4.88 0.05 -0.22 - 0.52 -0.64 -0.0 0.1 -1.74 -4.87 0.11 -0.34 - 1.45 1.83 0.2 0.5 1.72 4.81 0.90 -1.25 -	0.84 -1.0 0.35 -0.0 0.52 -0.0	9.15 1.12	0.52 79.15 0.50 81.12	.53 40.57947 0.52 79.15 .57 70.42664 0.50 81.12	40.57924 1.53 40.57947 0.52 79.15 70.42654 1.57 70.42664 0.50 81.12	0.2377 40.57924 1.53 40.57947 0.52 79.15 5 0.2381 70.42654 1.57 70.42664 0.50 81.12
0.35 -0.43 -0.0 0.1 -1.74 -4.88 0.05 -0.22 - 0.52 -0.64 -0.0 0.1 -1.74 -4.87 0.11 -0.34 - 1.45 1.83 0.2 0.5 1.72 4.81 0.90 -1.25 -	1.12 0.35 -0. ⁴ 1.32 0.52 -0.	0.50 8		.57 70.42664	70.42654 1.57 70.42664	5 0.2381 70.42654 1.57 70.42664
0.52 -0.64 -0.0 0.1 -1.74 -4.87 0.11 -0.34 - 1.45 1.83 0.2 0.5 1.72 4.81 0.90 -1.25 -	1.32 0.52 -0.					
-1.45 1.83 0.2 0.5 1.72 4.81 0.90 –1.25 -		.50 8	0	57 123.08989 0	123.08975 1.57 123.08989 0	U 63680.221 /c.1 c/680.21 Uc25.0 0
	8.99 –1.45 1.	.52 7	0	53 152.65869 0	152.65910 1.53 152.65869 0	5 0.2348 152.65910 1.53 152.65869 0
1.06 -1.36 -0.1 0.4 -1.75 -4.91 0.47 -0.83 -	8.18 1.06 -1.	.53 7	0	55 186.35598 0	186.35568 1.55 186.35598 0	5 1.6120 186.35568 1.55 186.35598 0
-1.45 1.83 2.49	4.77 -1.45 1.8					

	ω
	5
	b
	÷
	00
	tO
	th
t_E0 (C0)	ļ
ctions_se	
Dire	1
ions:	
Direct	

Station-Id	Target-Id	hi m ni	th in m	t0 in 。	a0 " u	in c	p "i	r in %	ω	∩ "	EP in mm	EF-SP in mm	∇(1) in "	∇(λ) in "	G	log(p _{prio})	log(p _{post})	Tprio	Tpost	$T \leq q \mid H_0$	
CO	DO	1.6585	1.5840	0.07707	1.54	0.07751	0.53	78.26	1.58	-2.02	-0.2	0.6	-1.74	-4.87	1.06	-1.41	-2.15	1.35	2.53	>	
co	ST10	1.6585	0.2369	34.21501	1.53	34.21457	0.52	79.18	-1.59	2.01	0.2	0.5	1.72	4.81	1.09	-1.42	-2.17	1.37	2.56	>	
co	ST8	1.6585	0.2417	64.12956	1.57	64.12986	0.50	81.33	1.11	-1.36	-0.1	0.3	-1.74	-4.87	0.50	-0.83	-1.23	0.61	1.12	>	
CO	ST6	1.6585	0.2377	116.77588	1.57	116.77589	0.51	81.00	0.06	-0.07	-0.0	0.0	-1.74	-4.88	0.00	-0.03	-0.04	00.0	0.00	>	
CO	ST4	1.6585	0.2381	146.26206	1.53	146.26178	0.52	79.04	-0.99	1.25	0.1	0.3	1.72	4.81	0.42	-0.76	-1.11	0.53	0.96	>	_
co	BO	1.6585	1.6255	180.08476	1.52	180.08474	0.53	77.94	-0.08	0.11	0.0	0.0	1.72	4.83	0.00	-0.05	-0.07	00.0	0.01	>	
								4.77	-1.59	-2.02					3.06					>	_
Observation Gro	up: Directions_set	_Eo (Co) (A-pi	riori: $\sigma_a = 1.50$	", $\sigma_c = 0.50 \text{ mm}$)																	

E .
õ
0.2
ï
ಲೆ
÷^
-50
ī
$\sigma_{\rm a}$
Ë
Ĕ
Ł
ě
ŏ
EO (
set
Directions
ä
Grou
ervation
10

Directions: I	Directions_se	t_E0 (D0)																		
Station-Id	Target-Id	Hi n	th m	t0 in °	a0 " u	in c	i a	in %	s "ii	⊳ ″ii	EP in mm	EF.SP in mm	∇(1) in "	∇(λ) in "	С	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
DO	ST10	1.5840	0.2369	0.19558	1.58	0.19526	0.69	64.87	-1.16	1.79	0.1	0.4	1.97	5.51	0.54	-1.01	-1.51	0.83	1.52	>
DO	ST8	1.5840	0.2417	44.86931	1.54	44.86926	0.67	65.20	-0.16	0.25	0.0	0.0	1.91	5.35	0.01	-0.11	-0.15	0.02	0.03	>

1.94 1.26 -1.97

 $T \le q \mid H_0$ > T_{post} -1.78 1.05 1.94 T_{prio} log(p_{post}) log(p_{prio}) -1.18C -5.40∇(λ) in " -1.93 $\nabla(1)$ in " 0.4 EF.SP in mm -0.0 in mm ⊳ ″ui ω ″ r in % ü, d 90.15686 0.69 ° E 90.15651 1.54 σ0 in " in to 1.5840 1.6585 th in m in n Target-Id 00 Station-Id DO

0.67 1.21 -1.97 -1.97 **1.26** 1.26 **63.74** 1.94

Observation Group: Directions_set_Eo (Do) (A-priori: σ_{a} = 1.50 $'',\,\sigma_{c}$ = 0.50 mm)

Slope Distances: Slope_distance_Eo

Station-Id	Target-Id	ri m	th in m	s _{3D} 0 in m	σ0 in mm	S _{3D} in m	a in mm	r in %	ε in mm	in mm	EP m m EP	F.SP	V(1) n mm	v mm 1 mm	C	log(p _{prio})	log(p _{post})	T _{prio}	T _{post}	T ≤ q H ₀
ST0	AO	0.2346	1.6120	203.8089	0.51	203.8086	0.25	56.01	-0.3	0.6	0.3	1.5	0.7	1.9	0.43	-0.96	-1.42	0.76	1.40	>
ST0	BO	0.2346	1.6255	362.5570	0.53	362.5567	0.26	55.08	-0.3	0.6	0.3	1.5	0.7	2.0	0.37	-0.88	-1.30	0.67	1.22	>
ST0	ST2	0.2346	0.2350	200.0050	0.51	200.0052	0.24	58.70	0.1	-0.2	-0.1	0.5	-0.7	-1.9	0.06	-0.30	-0.41	0.11	0.19	>
ST2	ST0	0.2348	0.2348	200.0048	0.51	200.0052	0.24	58.70	0.4	-0.7	-0.3	1.8	-0.7	-1.9	0.66	-1.25	-1.89	1.13	2.10	>
ST2	AO	0.2348	1.6120	262.0425	0.52	262.0420	0.24	60.46	-0.5	0.8	0.3	1.9	0.7	1.9	0.84	-1.43	-2.19	1.39	2.59	>
ST2	BO	0.2348	1.6255	225.9346	0.51	225.9342	0.24	59.09	-0.4	0.7	0.3	1.8	0.7	1.9	0.70	-1.28	-1.94	1.18	2.19	>
ST2	ST4	0.2348	0.2381	200.0095	0.51	200.0096	0.26	53.94	0.1	-0.2	-0.1	0.4	-0.7	-1.9	0.03	-0.19	-0.27	0.05	0.09	>
ST4	ST2	0.2379	0.2350	200.0097	0.51	200.0096	0.26	53.94	-0.1	0.2	0.1	0.5	0.7	1.9	0.04	-0.23	-0.32	0.07	0.12	>
ST4	BO	0.2379	1.6255	224.9747	0.51	224.9745	0.25	57.49	-0.1	0.2	0.1	0.5	0.7	1.9	0.05	-0.25	-0.35	0.08	0.15	>
ST4	CO	0.2379	1.6585	363.0153	0.53	363.0154	0.24	64.13	0.2	-0.2	-0.1	0.6	-0.7	-1.9	0.09	-0.35	-0.48	0.14	0.25	>
ST4	ST6	0.2379	0.2377	199,9579	0.51	199.9579	0.23	62.80	0.0	-0.0	-0.0	0.0	-0.6	-1.8	0.00	-0.01	-0.02	0.00	0.00	>
ST6	ST4	0.2375	0.2381	199.9578	0.51	199.9579	0.23	62.80	0.1	-0.1	-0.1	0.3	-0.6	-1.8	0.03	-0.19	-0.27	0.05	0.09	>
ST6	BO	0.2375	1.6255	360.8031	0.53	360.8031	0.29	45.79	-0.0	0.0	0.0	0.1	0.8	2.2	0.00	-0.04	-0.05	0.00	0.00	>
ST6	CO	0.2375	1.6585	226.2368	0.51	226.2366	0.24	59.11	-0.2	0.4	0.2	1.0	0.7	1.9	0.21	-0.59	-0.85	0.35	0.64	>
ST6	ST8	0.2375	0.2417	200.0188	0.51	200.0189	0.25	54.32	0.2	-0.3	-0.1	0.8	-0.7	-1.9	0.10	-0.40	-0.57	0.19	0.34	>
ST8	ST6	0.2415	0.2377	200.0189	0.51	200.0189	0.25	54.32	0.0	-0.1	-0.0	0.2	-0.7	-1.9	0.01	-0.08	-0.11	0.01	0.02	>
ST8	CO	0.2415	1.6585	224.8260	0.51	224.8256	0.24	60.14	-0.4	0.7	0.3	1.7	0.7	1.9	0.68	-1.24	-1.88	1.13	2.09	>
ST8	DO	0.2415	1.5840	284.4758	0.52	284.4760	0.24	61.08	0.2	-0.3	-0.1	0.8	-0.7	-1.9	0.16	-0.50	-0.71	0.26	0.48	>
ST8	ST10	0.2415	0.2369	200.0071	0.51	200.0069	0.24	59.23	-0.2	0.3	0.1	0.7	0.7	1.9	0.11	-0.41	-0.58	0.19	0.34	>
ST10	ST8	0.2367	0.2417	200.0067	0.51	200.0069	0.24	59.23	0.2	-0.3	-0.1	0.9	-0.7	-1.9	0.16	-0.51	-0.73	0.27	0.50	>
ST10	CO	0.2367	1.6585	360.4932	0.53	360.4930	0.27	51.78	-0.2	0.5	0.2	1.2	0.7	2.1	0.21	-0.65	-0.94	0.41	0.75	>
ST10	DO	0.2367	1.5840	202.3001	0.51	202.2997	0.25	55.35	-0.3	0.6	0.3	1.5	0.7	1.9	0.41	-0.94	-1.40	0.74	1.36	>
AO	BO	1.6120	1.6255	268.8177	0.52	268.8175	0.25	56.54	-0.1	0.3	0.1	0.7	0.7	1.9	0.08	-0.35	-0.49	0.14	0.26	>
AO	ST2	1.6120	0.2350	262.0419	0.52	262.0420	0.24	60.46	0.1	-0.2	-0.1	0.4	-0.7	-1.9	0.03	-0.21	-0.29	0.06	0.10	>
AO	ST0	1.6120	0.2348	203.8082	0.51	203.8086	0.25	56.01	0.4	-0.7	-0.3	1.9	-0.7	-1.9	0.63	-1.24	-1.88	1.13	2.09	>
BO	CO	1.6255	1.6585	400.4907	0.54	400.4909	0.26	57.15	0.2	-0.4	-0.2	0.8	-0.7	-2.0	0.14	-0.47	-0.67	0.24	0.44	>
BO	ST4	1.6255	0.2381	224.9744	0.51	224.9745	0.25	57.49	0.2	-0.3	-0.1	0.8	-0.7	-1.9	0.13	-0.46	-0.65	0.23	0.41	>
BO	ST2	1.6255	0.2350	225.9334	0.51	225.9342	0.24	59.09	0.7	-1.2	-0.5	3.0	-0.7	-1.9	1.92	-2.64	-4.29	3.25	6.38	×
BO	AO	1.6255	1.6120	268.8173	0.52	268.8175	0.25	56.54	0.2	-0.4	-0.2	1.0	-0.7	-1.9	0.19	-0.58	-0.83	0.34	0.61	>
CO	DO	1.6585	1.5840	298.5147	0.52	298.5148	0.25	56.45	0.1	-0.2	-0.1	0.6	-0.7	-1.9	0.06	-0.29	-0.40	0.10	0.19	>
								21.37	0.7	-1.2					10.23					×

								-
T ≤ q H ₀	>	>	>	>	>	>	>	×
Tpost	1.89	0.01	0.16	0.53	2.61	0.01	0.30	
Tprio	1.02	0.01	0.09	0.29	1.40	0.00	0.17	
log(p _{post})	-1.75	-0.09	-0.37	-0.76	-2.20	-0.07	-0.54	
log(p _{prio})	-1.17	-0.07	-0.27	-0.53	-1.44	-0.05	-0.38	
С	0.62	0.00	0.06	0.17	0.77	0.00	0.09	10.23
V(λ) in mm	-1.9	1.9	1.9	2.0	-1.9	1.9	1.9	
$\nabla(1)$ in mm	-0.7	0.7	0.7	0.7	-0.7	0.7	0.7	
EF-SP in mm	1.6	0.1	0.4	0.9	2.1	0.1	0.7	
EP in mm	-0.3	0.0	0.1	0.2	-0.4	0.0	0.1	
in mm	-0.7	0.1	0.2	0.4	-0.8	0.0	0.3	-1.2
ε in mm	0.4	-0.0	-0.1	-0.2	0.4	-0.0	-0.2	0.7
r %	60.14	59.11	64.13	57.15	55.35	61.08	56.45	21.37
in mm	0.24	0.24	0.24	0.26	0.25	0.24	0.25	
S _{3D} in m	224.8256	226.2366	363.0154	400.4909	202.2997	284.4760	298.5148	
a0 in mm	0.51	0.51	0.53	0.54	0.51	0.52	0.52	
s _{3D} 0 in m	224.8252	226.2366	363.0155	400.4911	202.2993	284.4760	298.5150	
in m	0.2417	0.2377	0.2381	1.6255	0.2369	0.2417	1.6585	
ri _E	1.6585	1.6585	1.6585	1.6585	1.5840	1.5840	1.5840	
Target-Id	ST8	ST6	ST4	BO	ST10	ST8	C	
Station-Id	0	0	0	0	00	00	00	

Observation Group: Slope_distance_Eo (A-priori: $\sigma_a = 0.50 \text{ mm}, \sigma_c = 0.5 \text{ ppm})$

$T \le q \mid H_0$ 0.02 1.10 1.30 2.55 2.08 1.70 0.06 2.02 0.43 1.85 0.19 1.55 0.10 Tpost 0.32 0.18 0.40 0.01 0.84 4.11 1.94 0.09 0.53 0.01 0.06 1.12 0.92 0.22 0.01 0.03 0.46 0.24 0.05 0.29 0.03 0.10 0.06 Tprio 0.18 0.01 0.60 0.71 1.37 0.10 2.15 1.09 1.00 1.05 0.01 0.84 -1.88-1.79 -0.09 -1.53 -0.29 -0.56 -0.13 -1.35 -0.40 -1.63 -0.64 -0.08 -0.21 -1.01-3.07 -1.84-0.67 -1.73 -0.27 -0.76 -0.21 -1.21 -2.17 -0.41 log(p_{post}) -0.09 -0.83 -1.24 -1.09 -0.15 -0.70 -0.06 -0.39 -0.92 -1.42 -0.28 -0.45 -0.06 -1.95 -1.21 -0.47 -1.15-1.18-0.19 -0.53 -0.15 -0.29 -1.02 -0.21 log(p_{prio}) 0.12 0.48 0.66 0.00 0.73 0.00 0.07 0.17 0.02 0.34 0.18 0.59 0.19 0.66 0.04 15.72 0.01 0.41 1.05 0.61 1.440.77 0.04 0.02 0.07 C -12.79 15.33 12.69 15.60 -12.56 13.80 -14.19 13.03 12.67 13.64 13.68 -13.0113.80 -12.94 15.11-12.61 -12.78 -13.74-12.82 13.11 -13.31-12.8112.41 -13.73∇(入) in ″ -4.48 -4.56 4.88 -4.58 -4.75 5.57 -4.65 4.93 4.93 -4.62 5.39 -4.50 -5.064.65 -4.56 -4.90 -4.90 -4.57 4.43 4.68 5.47 4.53 4.52 4.87 ∇(1) in " 1.0 0.5 1.8 0.8 0.2 0.6 1.0 1.2 0.4 1.9 1.2 0.4 0.1 0.2 0.7 2.0 1.40.2 0.1 0.2 0.4 0.8 0.1 1.1EF-SP in mm -0.2 -0.8 -0.6 -0.9 -0.5 -0.3 -0.6 -1.3 1.6 1.2 -1.40.4 2.5 0.6 0.2 2.2 -1.3 2.3 -0.3 0.1 -0.2 1.2 0.1 1.1EP in mm 0.49 3.77 -5.35 5.80 2.13 0.42 -0.79 -3.15 5.14 -2.26 -1.000.36 4.15 -1.08-2.06 1.47-4.56 7.23 -4.57 5.52 -2.74 -0.81 -1.587.23 4.11-3.15 3.28 -0.40 -2.59 4.13 0.63 2.36 -3.44 1.72 -3.09 0.80 0.63 -3.26 0.84 1.39 -2.80 -1.09 -1.67 -0.22 -4.85 3.53 1.74-0.27 5.27 1.07 ω ____ 77.18 27.00 78.39 52.45 55.95 74.69 67.57 81.97 68.66 68.23 77.12 73.98 54.34 71.85 80.07 75.11 67.03 67.00 76.01 77.13 79.44 63.41 77.69 67.70 78.54 r % 1.42 1.37 1.26 1.67 1.68 1.42 1.52 2.01 1.58 1.38 2.06 1.32 1.49 1.71 1.71 1.46 1.98 1.34 1.80 1.49 1.40 1.69 1.42 1.70 ь [°] 90.03476 90.05688 90.01126 89.88126 89.92973 90.07438 90.05063 90.07523 89.90246 89.95224 90.05042 89.94550 89.94850 89.91784 89.99128 89.98208 89.99861 89.96789 90.01230 90.02491 89.91359 89.90541 89.99685 90.02069 > $^{\circ}_{.\subseteq}$ 4.01 4.03 4.03 4.01 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.02 4.03 4.01 4.02 4.03 4.03 4.02 4.02 4.03 4.01 4.01 4.01 g in " 90.05775 90.01115 89.91406 90.05069 90.07506 89.90181 89.95358 90.05137 89.94503 89.90443 89.94936 89.91736 90.01133 89.99111 89.88217 89.92950 89.98169 89.99872 90.02521 90.07347 89.99662 90.02039 89.96861 90.03554 ° N 1.6585 1.6255 0.2350 0.2348 1.6120 0.2350 1.6255 1.6585 1.6255 0.2417 1.6585 0.2369 1.6255 1.6120 0.2381 0.2377 1.58401.6585 1.5840 0.2350 0.2348 1.6585 0.2377 1.6255 u t 0.2346 0.2348 0.2348 0.2379 0.2379 0.2375 0.2375 0.2375 0.2375 0.2415 0.2415 0.2415 0.2415 1.6120 1.6120 1.6255 0.2346 0.2346 0.2348 0.2379 0.2367 0.2367 1.6120 1.6255 Zenith Angles: Zenith_angles_E0 in H Target-Id ST10 ST8 ST6 ST6 ST2 ST0 ST2 ST4 ST2 ST0 B0 A0 8 0 8 8 8 8 8 00 80 8 B AO Station-Id ST10 ST10 ST6 ST8 ST8 ST8 ST8 ST0 ST0 ST0 ST2 ST2 ST2 ST4 ST4 ST6 ST6 ST6 ST6 A0 A0 B0 B0
Station-Id	Target-Id	ri m ni	th in m	v 0 ° ri	a0 "	> °	n "	r in %	β	∩ ″	EP in mm	EF-SP in mm	$\nabla(1)$ in "	∇(λ) in "	С	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
BO	ST4	1.6255	0.2381	89.92903	4.03	89.92868	1.60	71.22	-1.24	1.75	0.5	0.4	4.77	13.37	0.10	-0.34	-0.47	0.13	0.24	>
BO	ST2	1.6255	0.2350	89.97671	4.03	89.97817	1.48	75.37	5.27	-6.99	-1.8	1.6	-4.64	-12.99	1.71	-2.03	-3.21	2.28	4.35	×
BO	ST0	1.6255	0.2348	90.00624	4.01	90,00638	1.22	82.94	0.51	-0.62	-0.1	0.1	-4.40	-12.34	0.02	-0.12	-0.16	0.02	0.04	>
BO	AO	1.6255	1.6120	89,99365	4.02	89.99246	1.47	75.52	-4.28	5.66	1.6	1.3	4.62	12.95	1.13	-1.51	-2.32	1.50	2.81	>
CO	DO	1.6585	1.5840	89.95196	4.01	89.95226	1.43	76.89	1.10	-1.43	-0.4	0.3	-4.58	-12.83	0.08	-0.28	-0.39	0.10	0.18	>
CO	ST10	1.6585	0.2369	90.00725	4.01	90.00811	1.29	81.07	3.11	-3,83	-1.0	0.7	-4.45	-12.48	0.60	-0.94	-1.40	0.74	1.36	>
CO	ST8	1.6585	0.2417	90.05768	4.03	90.05756	1.49	75.02	-0.45	0.59	0.1	0.1	4.65	13.02	0.01	-0.11	-0.15	0.02	0.03	>
CO	ST6	1.6585	0.2377	90.10050	4.03	90.10062	1.52	74.08	0.43	-0.58	-0.2	0.1	-4.68	-13.10	0.01	-0.10	-0.14	0.02	0.03	>
CO	ST4	1.6585	0.2381	90.09132	4.01	90.09140	1.34	79.62	0.30	-0.38	-0.1	0.1	-4.49	-12.59	0.01	-0.07	-0.09	0.01	0.01	>
CO	BO	1.6585	1.6255	90.12561	4.01	90.12428	1.31	80.39	-4.78	5.95	1.7	1.1	4.47	12.52	1.42	-1.70	-2.64	1.77	3.34	>
DO	ST10	1.5840	0.2369	90,08392	4.03	90.08490	1.78	64.47	3.54	-5.49	-1.8	1.6	-5.02	-14.07	0.77	-1.29	-1.96	1.20	2.22	>
DO	ST8	1.5840	0.2417	90.09742	4.02	90.09849	1.47	75.56	3.86	-5.10	-1.5	1.2	-4.62	-12.94	0.92	-1.31	-1.99	1.22	2.27	>
DO	C	1.5840	1.6585	90.05240	4.01	90.05187	1.44	76.32	-1.92	2.52	0.7	0.6	4.60	12.88	0.23	-0.54	-0.77	0.30	0.55	>
								27.00	5.27	7.23					15.72					×
Observation Grou	ıp: Zenith_angles	_Eo (A-priori:	$\sigma_a = 4.00$ ", σ_c	c = 0.50 mm																

Unknown Group Parameter

OTIMIOWII GLOUP FAFAILETEI					
Observation Group	Parameter Type	Value	b	IJ	$T \le q \mid H_0$
Directions_set_E0 (ST0)	Orientation	8.34687 °	0.77 "	1.51 ″	×
Directions_set_E0 (ST2)	Orientation	89.92420 °	0.75 "	1.47 "	×
Directions_set_E0 (ST4)	Orientation	83.69573 °	0.60 "	1.18 "	×
Directions_set_E0 (ST6)	Orientation	° 89,89993	0.69 ″	1.35 "	×
Directions_set_E0 (ST8)	Orientation	89.86222 °	0.65 "	1.27 "	×
Directions_set_E0 (ST10)	Orientation	89.86830 °	0.90 "	1.76 "	×
Directions_set_E0 (A0)	Orientation	269.69734 °	0.76 "	1.48 ″	×
Directions_set_E0 (B0)	Orientation	263.46146 °	0.50 "	0.98 ″	×
Directions_set_E0 (C0)	Orientation	269.88522。	0.50 "	0.97 "	×
Directions_set_E0 (D0)	Orientation	359.80587 °	0.75 "	1.48 ″	×
Zenith_angles_E0	Refraction	-0.54	0.11	0.22	×

Additional Unknown Parameter

Reliability of terrestrial observations

Observation GroupObservation TypeStation-IdTarget-Id<t

Observation Group	Observation Type	Station-Id	Target-Id	rmin in %	ravg in %	
Slope_distance_E0	Slope Distances	ST6	BO	45.79	57.75	
Zenith_angles_E0	Zenith Angles	ST6	ST4	52.45	72.97	
Summary of redundancy r						
Observation Group	Observation Type	Station-Id	Target-Id	log(p _{prio}	(nin)	log(p _{prio,avg}
Directions_set_E0 (ST4)	Directions	ST4	ST6	-1.7	1	-0.72
Slope_distance_E0	Slope Distances	BO	ST2	-2.6	4	-0.62
Zenith_angles_E0	Zenith Angles	BO	ST2	-2.0	e	-0.71
Summary of (a-priori) probability va	due p					
Observation Group	Observation Type	Station-Id	Target-Id	EPmax E	EP _{avg}	
Directions_set_E0 (ST4)	Directions	ST4	ST6	-0.2	0.1	
Slope_distance_E0	Slope Distances	BO	ST2	-0.5	0.2	
Zenith_angles_E0	Zenith Angles	ST4	ST2	2.5	0.9	

Summary of influence on point position due to an undetected gross-error EP

Distribution of (a-priori) probability value p-value (Mean interval: {p-value | 1.00 % \leq p-value \leq 5.00 %})

0 (0.0 %)

Distribution of influence on point position due to an undetected gross-error EP (Mean interval: {EP | 1.0 mm \leq EP \leq 5.0 mm})

Distribution of influence on point position due to an undetected gross-error EP (Mean interval: $\{EP \mid 1.0 \text{ mm} \le EP \le 5.0 \text{ mm}\}$)

Java-Applied-Geodesy-3D — © Michael Lösler — <u>software.applied-geodesy.org</u> …:: Least-Squares Adjustment Software for Geodetic Sciences ::..

Prilog 2. Izjednačenje prve epohe mjerenja

Java·Applied·Geodesy·3D - Report

Least-Squares Adjustment & Deformation Analysis

v20240105

Project JAG3D Version: Name of Project: Project Id: Customer Id: Person in Charge: Date of Calculation: Date of Report: Kind of network: Adjustment Type: Coordinate frame:

Probability Value a: Test Power (1-β): Description:

Least squares adjustment (L₂Norm) Local Cartesian model • Earth radius: R₀ = 6371007.000000 m • Earth's curvature reduction 5.00 % 80.00 %

free Network $(t_{\gamma},\,t_{X},\,t_{Z},\,r_{Z})$

2024-03-07 2024-03-14

B-Method (Baarda)

q (F _{d1,d2,1-a})	3.84	3.83	3.83	1.86	1.01	1.00	1.00	1.00	
log(p _{d1,d2})	-3.00	-2.92	-2.92	-2.00	-0.80	-0.78	-0.75	-0-51	
λ (α,β)	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	
$(1 - \beta)$ in %	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	
n %	5.00	5.41	5.42	13.47	44.99	45.62	47.32	60.06	
d2	8	77.00	76.00	8	8	8	8	8	
d1	1.00	1.00	1.00	3.00	24.00	25.00	28.00	77.00	

Test statistics Φ^{-I} w.r.t. the degree of freedom d_I and d_2 , respectively

Variance Component Estimation

Group name	Ű	Ű	$\Omega_{\rm G}$	$1:\sigma^2_G$	q ($F_{\rm r,\infty,1-d}$)	$T_G \le q \mid H_0$
Total Adjustment	114	77.00	61.77	0.80	1.00	>
Directions	36	25.00	19.68	0.79	1.00	>
Directions σ_a	36	25.00	19.68	0.79	1.00	>
Slope Distances	40	24.00	15.71	0.65	1.01	>
Slope Distances σ_a	40	24.00	15.71	0.65	1.01	>
Zenith Angles	38	28.00	26.38	0.94	1.00	>

T _G ≤ q H _C	>
q ($F_{\Gamma,\infty,1-d}$)	1.00
$1:\sigma^2_G$	0.94
$\Omega_{\rm G}$	26.38
ŋ	28.00
Вц	38
Group name	Zenith Angles σ _a

Variance Component Estimation

 $\frac{ \mbox{Principal component analysis}}{k \quad \sqrt{\lambda(k)} \quad \lambda(k)/trace(Cxx) }$

52.10 30 2.77

Principal component analysis

Plot

oints
d mitte
nts: D
m Poi
attu

Point-Id East yo Incident yo Height zo Total yo	Datun	1 Points:	: Datum points																			
V010000.00000010000.0000001000.0000001000.0000001000.0000001000.0000001000.0000001000.0000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.000000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.000000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.00000001000.000000000001000.00000000000001000.000000000000000000000000000000000	Point-	Id Code	East yo	North x0 in m	Height z0 in m	East y in m	North X in m	Height z in m	σ _y in mm	n mm mm	σ _z in mm ir	a J mm	b mm in rr	u u	β ° Li	≻ °	Δ_{y} in mm	$\Delta_{\rm X}$ in mm	$\Delta_{\rm Z}$ in mm	Sy in mm	S _X in mm	
V2 0 9799.996000 1000.10000 9799.99774 10000.00353 1000.25394 0.22 0.21 1.10 2.90 0.66 0.50 269.923727 37717746 269.923758 3.77 0.33 -14.61 0.00 714 0 9599.992000 9999.902000 9999.9023000 9999.9024517 1000.281924 0.12 2.14 0.73 2.43 7.73 2 2.48 7.08 0.00 714 0 9999.907000 9999.90100 9999.901200 9999.901200 9999.863029 1000.452376 0.11 2.29 0.83 0.43 26.932561 3.859861 9.0.22 1.49 7.08 0.00 714 0 9999.864000 9000.1000.14000 9999.863029 1000.452376 0.11 2.94 0.83 0.43 2.95 0.101 0.011 0.011 0.011 0.011 0.001100 9999.782049 1.000.1130 9999.78204 1.001 1.012 1.012 1.012 1.013 1.016 1.010 </th <th>ST0</th> <th>0</th> <th>10000.000000</th> <th>10000.000000</th> <th>1000.000000</th> <th>10000.003626</th> <th>10000.002147</th> <th>999.978743</th> <th>0.29</th> <th>0.30</th> <th>1.29</th> <th>3.40 1</th> <th>-00 00⁻</th> <th>17 89.95133</th> <th>5 316.526373</th> <th>89.995420</th> <th>3.63</th> <th>2.15</th> <th>-21.26</th> <th>00"0</th> <th>0.00</th> <th>-</th>	ST0	0	10000.000000	10000.000000	1000.000000	10000.003626	10000.002147	999.978743	0.29	0.30	1.29	3.40 1	-00 00 ⁻	17 89.95133	5 316.526373	89.995420	3.63	2.15	-21.26	00"0	0.00	-
714 0 9599.997200 9999.90700 1000.28990 9999.901284 9999.904517 1000.281924 0.13 1.12 2.94 0.83 5.69.33251 357.177746 5.69.969781 -0.72 2.48 -7.08 0.00 716 9400.03300 9999.864000 1000.451000 9400.032889 9999.863029 1000.452376 0.11 2.94 0.83 0.43 2.69.93261 3.57.17746 5.9.927681 -0.17 -0.97 1.38 0.00 716 9400.033000 9999.782000 1000.451000 9400.032889 9999.782395 1000.452376 0.13 2.94 0.83 2.957584 9.027561 9.01 1.38 0.00 710 9999.796000 900.007711 9999.782952 1.02 1.12 2.41 0.15 0.12 1.23 0.14 0.12 0.13 0.02 1.38 0.00 7110 9999.786000 9900.07711 9999.782821 0.24 0.25 0.25 0.25 0.25 0.22 0.23 0.25	ST2	0	9799,996000	10000.000000	1000.110000	9799.999774	10000.000395	1000.095394	0.22	0.21	1.10 2	2.90 C	64 0	0 269 92972	7 307.014062	269.982358	3.77	0.39	-14.61	00.00	-0.00	0
VIC 0 9400.033000 999.864000 100.45100 9400.032889 999.86302 100.452376 112 123 13.859861 3.859861 9.027261 -0.11 -0.97 13.8 -0.00 F18 0 9200.015000 999.782000 1000.451000 9490.782895 1000.64971 0.22 1.10 2.90 0.65 0.49 89.912791 8.955749 4.006702 89.957647 4.00 1.90 1.90 9.00 F110 0 9900.011000 9999.795000 1000.798000 9900.00711 9999.795217 1000.817178 0.23 1.10 1.21 2.11 </th <th>ST4</th> <th>0</th> <th>9599,992000</th> <th>000700.9999</th> <th>1000.289000</th> <th>9599,991284</th> <th>9999.904517</th> <th>1000.281924</th> <th>0.16</th> <th>0.32</th> <th>1.12 2</th> <th>2.94 C</th> <th>.85 0.4</th> <th>13 269,93325.</th> <th>1 357.177746</th> <th>269.969781</th> <th>-0.72</th> <th>-2.48</th> <th>-7.08</th> <th>00.00</th> <th>-0.00</th> <th>0</th>	ST4	0	9599,992000	000700.9999	1000.289000	9599,991284	9999.904517	1000.281924	0.16	0.32	1.12 2	2.94 C	.85 0.4	13 269,93325.	1 357.177746	269.969781	-0.72	-2.48	-7.08	00.00	-0.00	0
78 0 9200.015000 999.782000 1000.617000 909.78205 1000.624971 0.22 0.22 1.0 2.0 0.23 1.0	ST6	0	9400.033000	9999.864000	1000.451000	9400.032889	9999,863029	1000.452376	0.16	0.32	1.12 2	2.94 C	83 0.4	13 269 93266.	1 3.859861	90.027261	-0.11	-0.97	1.38	-0.00	-0.00	ĭ
F110 0 9000.011000 999.796000 1000.7711 999.79517 1000.817178 0.28 1.29 3.41 0.47 89.957647 46.006702 89.984934 -3.29 -0.78 19.18 -0.00 A1 0 9657827000 998.59000 9657831658 9798.764875 998.672582 0.24 0.25 1.29 3.41 0.76 0.53 89.961222 42.383959 89.992844 4.66 1.88 -17.42 0.00 A1 0 9669013000 998.624000 995.76477 9.026 0.53 89.961222 42.383959 89.992844 4.66 1.88 -17.42 0.00 B1 0 9699013000 999.642000 999.619878 0.15 0.25 0.68 0.36 89.916357 346.918338 270.065557 -2.20 -2.59 -4.12 0.00 0 9699.013000 999.416000 9297.680441 9.425483 0.15 0.25 0.68 0.36 89.916357 346.918338 270.065557 <t< th=""><th>ST8</th><th>0</th><th>9200.015000</th><th>9999,782000</th><th>1000.610000</th><th>9200.014766</th><th>9999.782995</th><th>1000.624971</th><th>0.22</th><th>0.22</th><th>1.10 2</th><th>2.90 C</th><th>.65 0.4</th><th>19 89 91279</th><th>7 312.751034</th><th>89.957798</th><th>-0.23</th><th>1.00</th><th>14.97</th><th>-0.00</th><th>-0.00</th><th>ĭ</th></t<>	ST8	0	9200.015000	9999,782000	1000.610000	9200.014766	9999.782995	1000.624971	0.22	0.22	1.10 2	2.90 C	.65 0.4	19 89 91279	7 312.751034	89.957798	-0.23	1.00	14.97	-0.00	-0.00	ĭ
A1 0 99673827000 9798.763000 9967.831658 9798.764875 998.672582 0.24 0.25 1.20 3.41 0.76 0.53 89.961222 42.3333959 89.992844 4.66 1.88 -17.42 0.00 B1 0 9699.013000 9797.903000 998.610799 9797.900413 998.619878 0.15 0.25 0.26 0.36 89.916357 345.918338 270.065557 -2.20 -2.59 -4.12 0.00 C1 0 9299.524000 9797.680411 999.425483 0.15 0.25 0.66 0.36 89.916357 345.918338 270.065557 -2.20 -2.59 -4.12 0.00 D1 0 9299.574000 979.416000 9299.521125 9797.480411 999.425483 0.15 0.26 0.45 0.56 2.68 0.466 2.88 9.9913685 12.257521 89.941701 -2.88 -0.56 9.48 -0.00 D208.9570200 9797.494100 999.742607 999.745683 0.27 1.34 3.52 0.81 89.941701 -2.88 -0.56 9.48 <th>ST10</th> <th>0</th> <th>9000.011000</th> <th>000967.6666</th> <th>1000.798000</th> <th>9000.007711</th> <th>9999.795217</th> <th>1000.817178</th> <th>0.28</th> <th>0.28</th> <th>1.29</th> <th>3.41 C</th> <th>.94 0.4</th> <th>17 89.95764</th> <th>7 46.006702</th> <th>89.984934</th> <th>-3.29</th> <th>-0.78</th> <th>19.18</th> <th>-0.00</th> <th>0.00</th> <th>ï</th>	ST10	0	9000.011000	000967.6666	1000.798000	9000.007711	9999.795217	1000.817178	0.28	0.28	1.29	3.41 C	.94 0.4	17 89.95764	7 46.006702	89.984934	-3.29	-0.78	19.18	-0.00	0.00	ï
B1 0 9699.013000 9797.903000 9699.017079 9797.900413 998.619878 0.15 0.25 0.68 0.36 89.916357 346.918338 270.065557 -2.20 -2.59 -4.12 0.00 C1 0 9298.524000 9797.681000 999.416000 9298.521125 9797.680441 999.425483 0.15 0.26 2.54 0.67 0.36 89.913685 12.257521 89.941701 -2.88 -0.66 9.48 -0.00 D1 0 8999.970200 9797.494100 999.45668 9797.496071 999.761473 0.24 0.27 1.34 3.52 0.81 0.52 89.908995 322.127042 89.983298 -2.63 1.94 70.00 A166 -2.59 -2.126 -2.59 -2.126 -2.56 -2.126 -2.56 -2.126	A1	0	9967.827000	9798.763000	998.690000	9967.831658	9798.764875	998.672582	0.24	0.25	1.29	3.41 C	76 0.5	3 89,96122.	2 42.383959	89.992844	4.66	1.88	-17.42	00.00	0.00	-
C1 0 9298.524000 9797.681000 9298.521125 9797.68041 999.425483 0.15 0.25 0.36 89.913685 12.257521 89.941701 -2.88 -0.56 9.48 -0.00 D1 0 8999.970200 9797.494100 999.761671 999.761473 0.24 0.27 1.34 3.52 0.81 0.52 89.908995 322.127042 89.983298 -2.63 19.47 -0.00 A1.66 -2.756 9797.496071 999.761473 0.24 0.27 1.34 3.52 0.81 0.52 89.908995 322.127042 89.983298 -2.63 19.47 -0.00 A1.66 -2.59 9707.496071 999.761473 0.27 1.34 3.52 0.81 0.52 89.908995 322.127042 89.9833298 -2.63 1.9.7 19.47 -0.00 A1.66 -2.56 97.7496071 999.761473 0.27 1.34 3.52 0.81 0.52 89.908995 322.127042 8.66 -2.69 -2.1	B1	0	9699.013000	9797.903000	998.624000	9699.010799	9797.900413	998.619878	0.15	0.25	; 96.0	2 . 53 C	68 0	16 89 <u>.</u> 91635	7 346.918338	270.065557	-2.20	-2.59	-4.12	00.00	-0.00	0
D1 0 8999.970200 9797.494100 999.742000 8999.967568 9797.496071 999.761473 0.24 0.27 1.34 3.52 0.81 0.52 89.908995 322.127042 89.983298 -2.63 1.97 19.47 -0.00 4.66 -2.59 -21.26	CI	0	9298.524000	9797.681000	999.416000	9298.521125	9797.680441	999.425483	0.15	0.25	; 96°0	2.54 (67 0	36 89 91368 [.]	5 12.257521	89.941701	-2.88	-0.56	9.48	-0.00	-0.00	T
4.66 -2.59 -21.26	D1	0	8999.970200	9797.494100	999.742000	8999.967568	9797.496071	999.761473	0.24	0.27	1.34	3.52 C	81 0.	2 89,90899.	5 322.127042	89.983298	-2.63	1.97	19.47	-0.00	0.00	1
																	4.66	-2.59	-21.26			

-

0
LS
EI (
set
JIS .
tio
rec'
Dii
IS:
tio.
rec
Din

Station-Id	Target-Id	ri B	th n	t0 in °	00 "	in °	ت " م	r %	E in mgon	√ in mgon	EP in mm	EF-SP in mm	∇(1) in mgon	π mgon	C	og(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀	
ST0	A1	0.234700	1.564000	167.731222	1.40	167.731197	0.75	64.66	-0.03	0.04	00"0	0.02	0.54	1.51	00.00	-0.07	-0.07	0.01	0.01	>	
ST0	B1	0.234700	1.551000	214.768458	1.40	214.768737	0.74	65.63	0.31	-0.47	0.01	0.15	-0.53	-1.49	0.52	-0.98	-1.12	0.79	0.98	>	
ST0	ST2	0.234700	0.235300	248.647889	1.40	248.647635	0.75	64.62	-0.28	0.44	0.04	0.20	0.54	1.51	0.43	-0.88	-1.00	0.66	0.82	7	
								1.95	0.31	-0.47					0.95					~	- \
Observation Grou	1p: Directions set E	1 (STo) (A-priori:	$\sigma_{a} = 1.40$ ")																		

Directions: 1	Directions_se	t_E1 (ST2)																			
Station-Id	Target-Id	di n	in m	t0 in °	o n "	t °	p "	in %	E in mgon	Ω in mgon	EP in mm	EF-SP in mm	∇(1) In mgon	∇(λ) in mgon	G	og(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀	
ST2	ST0	0.235100	0.234900	150.409236	1.40	150.409032	0.69	69.65	-0.23	0.33	0.07	0.24	0.52	1.45	0.28	-0.64	-0.72	0.39	0.49	>	
ST2	A1	0.235100	1.564000	200.581069	1.40	200.581182	0.65	72.75	0.13	-0.17	-0.02	0.08	-0.51	-1.42	0.08	-0.31	-0.35	0.12	0.14	>	
ST2	B1	0.235100	1.551000	266.960250	1.40	266.960745	0.65	73.12	0.55	-0.75	-0.03	0.33	-0.51	-1.42	1.62	-1.99	-2.33	2.21	2.82	>	
ST2	ST4	0.235100	0.235600	330.382472	1.40	330.382068	0.71	68.30	-0.45	0.66	0.11	0.55	0.52	1.46	1.08	-1.57	-1.82	1.58	1.99	>	
								2.84	0.55	-0.75					3.06					>	_
Observation Gro	up: Directions set	E1 (ST2) (A-priori:	$: \sigma_a = 1.40$ ")																		

1.40
ii.
aa
-priori:
ġ
(ST2)
Ξ
set
Directions
Group:
Observation

	a0 " in "
	t0 in °
	th in m
t_E1 (ST4)	h n
irections_se	Target-Id
Directions: L	Station-Id

Station-Id	Target-Id	ri m	th m	to °	aU "	n °	n "	r in %	E in mgon	v in mgon	in mm	in mm	V(L) in mgon	V(A) in mgon	C	log(p _{prio})	log(p _{post})	Tprio	T _{post}	T ≤ q H ₀
374	B1	0.235400	1.551000	74.264444	1.40	74.264463	0.76	63.04	0.02	-0.03	-0.00	0.02	-0.54	-1.52	0.00	-0.05	-0-06	00.00	00.00	>
5T4	C1	0.235400	1.605000	156.524486	1.40	156.524461	0.74	65.63	-0.03	0.04	0.00	0.01	0.53	1.49	00.00	-0.07	-0-07	0.01	0.01	>
5T4	ST6	0.235400	0.237200	190.366000	1.40	190.366006	0.76	63.50	0.01	-0.01	-0.00	0.01	-0.54	-1.52	0.00	-0.02	-0.02	00.00	00.00	>
								1.92	-0.03	0.04					0.01					>
bservation Gro	up: Directions set	E1 (ST4) (A-priori	$: \sigma_a = 1.40$ ")					1		-										

Directions:	Directions_se	t_E1 (ST6)																		
Station-Id	Target-Id	di m	in th	t0 in °	in "	i t	p [°]	r %	E in mgon	∏ in mgon	EP mm	EF-SP in mm	abla(1) in mgon	V(λ) in mgon	С	log(p _{prio})	log(p _{post})	Tprio	T _{post}	T≤q H ₀
ST6	ST4	0.237000	0.235600	321.301375	1.40	321.301052	0.77	62.31	-0.36	0.58	0.10	0.39	0.55	1.53	0.69	-1.23	-1.42	1.11	1.39	>
ST6	B1	0.237000	1.551000	355.352056	1.40	355,352366	0.74	64.77	0.34	-0-53	-0.04	0.23	-0.54	-1.50	0.63	-1.13	-1.30	0.98	1.22	>
ST6	ST8	0.237000	0.241100	141.290000	1.40	141.290014	0.80	59.04	0.02	-0.03	-0.01	0.02	-0.56	-1.58	00.00	-0.04	-0.04	0.00	00.00	>
								1.86	-0.36	0.58					1.33					>
Observation Gr	nur Directions set	F1 (ST6) (A-nriori-	· π = 1 40 ")																	

 $\sigma_a = 1.40$ ")

 $\sigma_{a} = 1.40$ ")

Directions:	Directions_se	t_E1 (ST10)																			
Station-Id	Target-Id	di n	in m	t0 in °	a0 " u	i t	n a	r in %	E In mgon	n mgon	EP m	EF-SP in mm	∇(1) in mgon	$\nabla(\lambda)$ in mgon	G	log(p _{prio})	log(p _{post})	Tprio	T _{post}	T ≤ q H ₀	
ST10	ST8	0.236200	0.241100	36.543569	1.40	36.543605	0.75	64.39	0.04	-0.06	-0.01	0.03	-0.54	-1.51	0.01	-0.10	-0.11	0.01	0.02	>	
ST10	C1	0.236200	1.605000	70.640986	1.40	70.640894	0.73	65.67	-0.10	0.16	-0.00	0.05	0.53	1.49	0.06	-0.26	-0.29	0.09	0.11	>	
ST10	D1	0.236200	1.561500	126.551417	1.40	126.551473	0.75	64.32	0.06	-0.10	-0.01	0.05	-0.54	-1.51	0.02	-0.15	-0.17	0.03	0.04	>	
								1.94	-0.10	0.16					0.09					~	
Observation Gro	oup: Directions set	E1 (ST10) (A-prior	ri: $\sigma_a = 1.40$ ")																		

Station-Id	Target-Id	ri E	th B	t0 °	a0 " i	i t	n "	r in %	E in mgon	√ in mgon	in mm	EF-SP in mm	∇(1) in mgon	∇(À) in mgon	С	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H
Ŧ	B1	1.564000	1.551000	260.829028	1.40	260.829390	0.75	64.68	0.40	-0.62	-0.03	0.28	-0.54	-1.51	0.86	-1.40	-1.62	1.34	1.68	>
1	ST2	1.564000	0.235300	311.185500	1.40	311.185287	0.73	65.83	-0.24	0.36	0.01	0.11	0.53	1.49	0.30	-0.70	-0-79	0.46	0.57	>
1	ST0	1.564000	0.234900	0.096847	1.40	0.096699	0.75	64.41	-0.16	0.26	0.03	0.12	0.54	1.51	0.15	-0.45	-0.51	0.23	0.28	>
								1.95	0.40	-0.62					1.31					>

		ļ	th	40	00	+	b	_	ΰ.		Ц	FF.SP	Δ(1)	$(\gamma) \Delta$				ŀ	ł	
Station-Id	Target-Id	n n	m ni	o ui	in "	, ui	" u	, ni	in mgon	in mgon	in m	in m m	in mgon	in mgon	G	log(p _{prio})	log(p _{post})	prio	post	0 − H
B1	C1	1.551000	1.605000	140.600542	1.40	140.600295	0.67	71.56	-0.27	0.38	0.04	0.23	0.51	1.43	0.40	-0.79	-0.90	0.56	0.70	>
B1	ST4	1.551000	0.235600	204.518556	1.40	204.518334	0.65	73.24	-0.25	0.34	0.02	0.14	0.50	1.41	0.32	-0.68	-0.77	0.44	0.55	>
B1	ST2	1.551000	0.235300	257.182917	1.40	257.182977	0.65	73.23	0.07	-0.09	-0.01	0.04	-0.50	-1.41	0.02	-0.15	-0.17	0.03	0.04	>
B1	ST0	1.551000	0.234900	286.751958	1.40	286,752367	0.66	71.93	0.45	-0.63	-0.15	0.35	-0.51	-1.43	1.10	-1.53	-1.78	1.53	1.94	>
								2.90	0.45	-0.63					1.85					>

Directions: Directions_set_E1 (C1)

≤ q H ₀	>	>	>	>	>	>	>
post T	0.28	2.27	3.21	3.26	0.35	0.15	
T T	0.23 (1.79	2.51	2.54	0.28	0.12 (
log(p _{post}) 7	-0.51	-1.99	-2.56	-2.59	-0.58	-0.35	
log(p _{prio})	-0.46	-1.71	-2.18	-2.20	-0.52	-0.31	
С	0.18	1.44	2.04	2.06	0.23	0.10	6.05
V(λ) in mgon	-1.35	1.35	-1.34	1.34	-1.35	-1.35	
$\nabla(1)$ in mgon	-0.48	0.48	-0.48	0.48	-0.48	-0.48	
EF-SP in mm	0.14	0.34	0.33	0.35	0.13	0.10	
EP in mm	-0.05	0.14	-0.07	0.05	-0.02	-0.02	
ν in mgon	-0.23	0.64	-0.76	0.76	-0.26	-0.17	0.76
۶ in mgon	0.18	-0.52	0.62	-0.62	0.21	0.13	-0.62
r in %	79.88	80.58	81.44	81.31	80.64	80.06	4.84
in "	0.56	0.55	0.54	0.54	0.55	0.56	
t in °	44.272318	78.408491	108.322736	160.967997	190.454268	224.276231	
σ0 in "	1.40	1.40	1.40	1.40	1.40	1.40	
t0 in °	44.272153	78.408958	108.322181	160.968556	190.454083	224.276111	
in m	1.561500	0.236400	0.241100	0.237200	0.235600	1.551000	
hi n	1.605000	1.605000	1.605000	1.605000	1.605000	1.605000	
Target-Id	D1	ST10	ST8	ST6	ST4	B1	
Station-Id	C1	C1	C1	C1	C1	C1	

Observation Group: Directions_set_E1 (C1) (A-priori: $\sigma_a = 1.40^{\circ}$ ")

Directions:	Directions_set	t_E1 (D1)																		
Station-Id	Target-Id	ri n	th m	t0 in °	a0 " ui	in °	p [°] E	in %	E in mgon	⊽ in mgon	in mm	EF-SP in mm	∇(1) in mgon	∇(λ) in mgon	С	log(p _{prio})	log(p _{post})	Tprio	Tpost	T≤q H ₀
D1	ST10	1.561500	0.236400	321.854208	1.40	321.854395	0.74	64.78	0.21	-0.32	-0.03	0.14	-0.54	-1.50	0.23	-0.60	-0.68	0.36	0.44	>
D1	ST8	1.561500	0.241100	6.524264	1.40	6.524073	0.73	65.95	-0.21	0.32	0.01	0.09	0.53	1.49	0.24	-0.61	-0.69	0.37	0.45	>
D1	C1	1.561500	1.605000	51.807639	1.40	51.807643	0.74	65.15	00.00	-0.01	-0.00	00"0	-0.54	-1.50	0.00	-0.01	-0.01	00.00	00.00	>
								1.96	-0.21	0.32					0.47					>
Observation Gro	up: Directions_set_)	E1 (D1) (A-priori: ($\sigma_{a} = 1.40$ ")																	

Slope Dista	mces: Slope_d	listance_E1																		
Station-Id	Target-Id	ri n	th in m	s _{3D} 0 in m	a0 mm	S _{3D} in m	in mm	r in %	e in mm	n mm	EP mm	EF-SP in mm	$\nabla(1)$ in mm	V(λ) in mm	с	log(p _{prio})	log(p _{post})	Tprio	Tpost	T≤q H ₀
ST0	A1	0.234700	1.564000	203.792812	0.40	203.792727	0.24	56.70	-0.09	0.15	0.07	0.34	0.53	1.49	0.05	-0.25	-0.28	0.08	0.10	>
ST0	B1	0.234700	1.551000	362.548991	0.40	362.549024	0.20	67.40	0.03	-0.05	-0.02	0.10	-0.49	-1.36	0.01	-0.08	-0.09	0.01	0.01	>
ST0	ST2	0.234700	0.235300	200.003705	0.40	200.003887	0.22	60.57	0.18	-0.30	-0.12	0.65	-0.51	-1.44	0.21	-0.58	-0-66	0.34	0.42	>
ST2	ST0	0.235100	0.234900	200.004211	0.40	200.003887	0.22	60.57	-0.32	0.54	0.21	1.16	0.51	1.44	0.66	-1.21	-1.40	1.08	1.36	>
ST2	A1	0.235100	1.564000	262.036574	0.40	262.036800	0.22	60.94	0.23	-0.37	-0.14	0.80	-0.51	-1.44	0.32	-0.76	-0-86	0.52	0.65	>
ST2	B1	0.235100	1.551000	225.927481	0.40	225.927425	0.23	59.69	-0.06	0.09	0.04	0.21	0.52	1.45	0.02	-0.16	-0.17	0.03	0.04	>
ST2	ST4	0.235100	0.235600	200.008636	0.40	200.008600	0.25	52.30	-0.04	0.07	0.03	0.16	0.55	1.55	0.01	-0.10	-0.12	0.02	0.02	>
ST4	ST2	0.235400	0.235300	200.008764	0.40	200.008600	0.25	52.30	-0.16	0.31	0.15	0.75	0.55	1.55	0.17	-0.56	-0.64	0.32	0.40	>
ST4	B1	0.235400	1.551000	224.968471	0.40	224.968092	0.23	57.97	-0.38	0.65	0.27	1.47	0.53	1.47	06.0	-1.54	-1.79	1.55	1.95	>
ST4	C1	0.235400	1.605000	363.013541	0.40	363.013908	0.22	63.94	0.37	-0.57	-0.21	1.19	-0.50	-1.40	0.84	-1.38	-1.60	1.32	1.66	>
ST4	ST6	0.235400	0.237200	199.958790	0.40	199.958474	0.21	65.28	-0.32	0.48	0.17	66'0	0.50	1.39	0.62	-1.11	-1.28	0.96	1.20	>
ST6	ST4	0.237000	0.235600	199.959121	0.40	199.958474	0.21	65.28	-0.65	0.99	0.34	2.02	0.50	1.39	2.62	-3.10	-3.72	4.01	5.28	×
ST6	B1	0.237000	1.551000	360.800174	0.40	360.800441	0.21	64.13	0.27	-0.42	-0.15	0.86	-0.50	-1.40	0.44	06'0-	-1.03	0.69	0.86	>
ST6	C1	0.237000	1.605000	226.236169	0.40	226.235615	0.23	59.30	-0.55	0.93	0.38	2.06	0.52	1.46	1.92	-2.63	-3.12	3.23	4.19	×
ST6	ST8	0.237000	0.241100	200.017916	0.40	200.018217	0.24	53.41	0.30	-0.56	-0.26	1.33	-0.55	-1.53	0.57	-1.19	-1.37	1.06	1.33	>
ST8	ST6	0.240900	0.237200	200.018400	0.40	200.018216	0.24	53.41	-0.18	0.34	0.16	0.81	0.55	1.53	0.21	-0.63	-0.72	0.39	0.49	>
ST8	CI	0.240900	1.605000	224.830968	0.40	224.830986	0.23	60.42	0.02	-0.03	-0.01	0.07	-0.51	-1.44	0.00	-0.05	-0-05	00'0	00.0	> >
								22-1-2	11-11-1	11- 11					T / - / T					<

Station-Id	Target-Id	ri E	th in m	s _{3D} 0 in m	a0 mm	S _{3D} in m	in mm	r in %	c mm	n mm	EP in mm	EF-SP in mm	∇(1) in mm	V(λ) in mm	С	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
ST8	D1	0.240900	1.561500	284.497663	0.40	284.497962	0.22	62.24	0.30	-0.48	-0.18	1.02	-0.51	-1.42	0.56	-1.07	-1.23	06.0	1.12	>
ST8	ST10	0.240900	0.236400	200.007056	0.40	200.007143	0.22	61.89	0.09	-0.14	-0.05	0.30	-0.51	-1.42	0.05	-0.25	-0.27	0.08	0.09	>
ST10	ST8	0.236200	0.241100	200.007217	0.40	200.007143	0.22	61.89	-0.07	0.12	0.05	0.26	0.51	1.42	0.03	-0.21	-0.23	0.06	0.07	>
ST10	C1	0.236200	1.605000	360.500748	0.40	360.500543	0.21	66.76	-0.20	0.31	0.10	0.61	0.49	1.37	0.26	-0.63	-0-72	0.39	0.49	>
ST10	D1	0.236200	1.561500	202.299550	0.40	202.299330	0.24	56.34	-0.22	0.39	0.17	0.89	0.53	1.49	0.30	-0.77	-0.87	0.54	0.67	>
A1	B1	1.564000	1.551000	268.822509	0.40	268.822257	0.23	57.36	-0.25	0.44	0.19	0.99	0.53	1.48	0.40	06"0-	-1.03	0.69	0.86	>
A1	ST2	1.564000	0.235300	262.036923	0.40	262.036800	0.22	60.94	-0.12	0.20	0.08	0.44	0.51	1.44	0.09	-0.37	-0.41	0.15	0.19	>
A1	ST0	1.564000	0.234900	203.792798	0.40	203.792727	0.24	56.70	-0.07	0.13	0.05	0.29	0.53	1.49	0.03	-0.21	-0.23	0.06	0.07	>
B1	C1	1.551000	1.605000	400.490815	0.40	400.490657	0.24	56.02	-0.16	0.28	0.12	0.65	0.53	1.50	0.16	-0.51	-0-58	0.28	0.34	>
B1	ST6	1.551000	0.237200	360.799868	0.40	360.800441	0.21	64.13	0.57	-0.89	-0.32	1.85	-0.50	-1.40	2.05	-2.61	-3.10	3.20	4.15	×
B1	ST4	1.551000	0.235600	224.968101	0.40	224.968093	0.23	57.97	-0.01	0.01	0.01	0.03	0.53	1.47	0.00	-0.02	-0.02	00.00	0.00	>
B1	ST2	1.551000	0.235300	225.927348	0.40	225.927425	0.23	59.69	0.08	-0.13	-0.05	0.28	-0.52	-1.45	0.04	-0.22	-0-24	0.06	0.08	>
B1	ST0	1.551000	0.234900	362.548872	0.40	362.549024	0.20	67.40	0.15	-0.23	-0.07	0.45	-0.49	-1.36	0.14	-0.44	-0.50	0.21	0.26	>
B1	A1	1.551000	1.564000	268.822165	0.40	268.822257	0.23	57.36	60'0	-0.16	-0.07	0.36	-0.53	-1.48	0.05	-0.27	-0.31	0.09	0.11	>
C1	D1	1.605000	1.561500	298.553801	0.40	298.553757	0.23	57.18	-0.04	0.08	0.03	0.17	0.53	1.48	0.01	-0.12	-0.14	0.02	0.03	>
C1	ST10	1.605000	0.236400	360.500329	0.40	360.500543	0.21	66.76	0.21	-0.32	-0.11	0.64	-0.49	-1.37	0.29	-0.67	-0-76	0.43	0.53	>
C1	ST8	1.605000	0.241100	224.830881	0.40	224.830986	0.23	60.42	0.11	-0.17	-0.07	0.38	-0.51	-1.44	0.07	-0.31	-0.34	0.11	0.14	>
C1	ST6	1.605000	0.237200	226.235686	0.40	226.235615	0.23	59.30	-0.07	0.12	0.05	0.26	0.52	1.46	0.03	-0.20	-0.22	0.05	0.07	>
C1	ST4	1.605000	0.235600	363.013520	0.40	363.013908	0.22	63.94	0.39	-0.61	-0.22	1.26	-0.50	-1.40	0.94	-1.49	-1.73	1.47	1.85	>
C1	B1	1.605000	1.551000	400.490844	0.40	400.490657	0.24	56.02	-0.19	0.33	0.15	0.77	0.53	1.50	0.22	-0.63	-0.72	0.39	0.48	>
D1	ST10	1.561500	0.236400	202.299184	0.40	202.299330	0.24	56.34	0.15	-0.26	-0.11	0.59	-0.53	-1.49	0.13	-0.47	-0.53	0.24	0.29	>
D1	ST8	1.561500	0.241100	284.498073	0.40	284.497961	0.22	62.24	-0.11	0.18	0.07	0.38	0.51	1.42	0.08	-0.32	-0.36	0.13	0.15	>
D1	C1	1.561500	1.605000	298.553943	0.40	298.553757	0.23	57.18	-0.19	0.32	0.14	0.74	0.53	1.48	0.22	-0.62	-0.70	0.38	0.47	>
								24.00	-0.65	0.99					15.71					×
Observation Gro	up: Slope_distance_	_E1 (A-priori: $\sigma_{\rm a}$ =	0.40 mm)																	

 $T \le q \mid H_0$ 2.16 1.75 0.60 1.28 0.80 3.77 1.36 1.06 0.87 T_{post} 0.04 0.48 0.85 0.03 1.71 1.39 1.02 0.64 2.92 1.09 0.70 T_{prio} -0.17 -0.98 -2.89 -1.40 -1.19 -1.93 -1.66 -0.82 -1.34 -1.04 log(p_{post}) log(p_{prio}) -0.15 -1.65 -1.44 -0.72 -1.16-0.86 -2.44 -1.22 -1.03 -0.91 0.62 26.38 0.02 1.42 0.96 0.33 0.79 0.49 1.95 0.73 0.51 -2.42 -2.18 2.40 2.40 -2.33 -2.26 -2.27 2.44 2.44 2.33 $\nabla(\lambda)$ in mgon -0.86 -0.78 0.86 -0.80 -0.81 0.87 0.87 -0.83 0.83 0.86 $\nabla(1)$ In mgon 0.76 0.17 0.70 0.59 1.08 0.63 0.71 1.64 1.00 0.65 EF-SP in mm -0.15 -0.72 0.56 -0.50 1.49 -0.69 06.0 0.95 -0.66 0.91 EP in mm -0.15 0.59 1.49 -0.77 0.70 -1.02 -0.65 0.91 1.01 -0.81 1.90 ⊽ in mgon 0.10 0.85 0.50 -0.60 0.56 -0.51 -1.26-0.69 -0.41 0.63 -0.99 ٤ in mgon 72.73 72.74 68.65 66.62 28.00 83.07 68.65 76.69 66.62 67.64 77.77 in % 1.15 1.19 1.19 1.17 0.85 1.15 0.97 0.99 1.08 1.08 b ^{*}⊆ 89.994732 90.089600 89.967625 90.034689 89.947637 90.054678 89.921211 90.008928 90.022125 90.041851 $> \ \stackrel{\circ}{\underline{\subseteq}} \ <$ 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 o n " 89.994639 90.008167 89.968250 90.035056 90.021556 90.041403 89.948528 90.055222 90.089097 89.921667 ° <0 / 10 1.551000 .551000 1.564000 0.235300 0.234900 1.564000 1.551000 0.235600 0.235300 1.605000 in th 0.234700 0.235100 0.234700 0.235100 0.235100 0.235100 0.235400 0.235400 0.234700 0.235400 in in Zenith Angles: Zenith_angles_E1 Target-Id A1 B1 ST2 ST0 A1 B1 ST4 ST2 5 B Station-Id ST0
 ST0
 ST2
 ST2
 ST2
 ST2
 ST4
 ST4
 ST4

log(p _{prio}) log(p _{post}) T _{prio} T _{post}	-0.15 -0.17 0.03 0.04	-0.49 -0.56 0.26 0.32	-3.54 -4.28 4.76 6.35	-3.45 -4.17 4.61 6.13	-0.11 -0.12 0.02 0.02	-0.65 -0.74 0.41 0.51	-2.18 -2.57 2.51 3.22	-2.51 -2.98 3.04 3.94	-1.18 -1.36 1.04 1.30	-0.29 -0.32 0.10 0.12	-0.61 -0.69 0.36 0.45	-0.56 -0.63 0.32 0.40	-0.83 -0.94 0.60 0.75	-0.41 -0.46 0.19 0.23	-0.15 -0.17 0.03 0.04	-0.58 -0.65 0.34 0.42	-1.16 -1.34 1.02 1.27	-0.43 -0.49 0.21 0.26	-0.29 -0.32 0.10 0.13	-0.13 -0.14 0.02 0.03	-1.17 -1.34 1.02 1.28	-0.04 -0.05 0.00 0.00	-0.75 -0.85 0.52 0.64	-0.92 -1.05 0.71 0.88	-2.55 -3.03 3.10 4.02	-0.14 -0.15 0.03 0.03	-0.86 -0.98 0.64 0.79	
V(λ) Ω n mgon	-2.33 0.02	-2.33 0.19	2.44 3.16	2.44 3.06	2.28 0.01	-2.24 0.33	2.41 1.71	2.41 2.07	-2.19 0.86	-2.44 0.07	2.29 0.28	-2.26 0.25	-2.42 0.41	-2.26 0.15	2.33 0.02	-2.33 0.25	-2.27 0.78	2.18 0.17	2.29 0.08	2.26 0.02	-2.19 0.85	2.28 0.00	-2.33 0.38	-2.33 0.51	2.26 2.41	-2.44 0.02	-2.24 0.50	
SP ∇(1) m in mgon ir	.14 –0.83	42 -0.83	10 0.87	07 0.87	09 0.81	43 -0.80	47 0.86	62 0.86	.56 -0.78	31 -0.87	45 0.82	40 -0.80	73 -0.86	.28 -0.81	14 0.83	48 -0.83	74 -0.81	.24 0.78	.24 0.82	10 0.81	55 -0.78	04 0.81	.59 -0.83	65 -0.83	13 0.81	15 -0.87	54 -0.80	
EP in mm in m	-0.20 0.	-0.38 0.	1.92 2.	1.89 2.	0.08 0.	-0.43 0.	1.31 1.	1.44 1.	-0.58 0.	-0.28 0.	0.45 0.	-0.37 0.	-0.66 0.	-0.37 0.	0.19 0.	-0.44 0.	-0.62 0.	0.25 0.	0.24 0.	0.11 0	-0.58 0.	0.03 0.	-0.54 0.	-0.91 0.	1.49 1.	-0.14 0.	-0.53 0.	
E ⊽ ngon in mgon	0.11 -0.15	0.31 -0.42	1 26 1 90	1 24 1 87	0.08 0.10	0.40 -0.51	0.93 1.36	1.02 1.50	0.66 -0.80	0.18 -0.28	0.37 0.49	0.35 -0.46	0.45 -0.67	0.27 -0.35	0.11 0.15	0.35 -0.48	0.63 -0.82	0.29 0.35	0.20 0.26	0.09 0.12	0.65 -0.79	0.03 0.04	0.44 -0.60	0.51 -0.70	1 10 1 42	0.09 -0.14	0.50 -0.64	, o o
r in %	72.56	72.74	- 66.41	66.41 -	75.95	78.66	- 68.11 -	- 68.11 -	82.63	66.33	75.71 -	77.77	67.64	77.75	72.56 -	72.73	76.69	83.07	75.71 -	- 77.21 -	82.63	75.95	72.74	72.74	- 77.75 -	66.33	78.66	
v in °	90.084529 1.08	89.914986 1.08	89.950600 1.19	90.051715 1.19	89.959416 1.01	89.909670 0.95	89.947442 1.16	90.054872 1.16	90.005828 0.86	89 924873 1 20	90.015636 1.02	89.981013 0.97	90.007687 1.17	89.879453 0.97	89.919821 1.08	89.913081 1.08	89.960842 0.95	89.995443 0.85	89.987628 1.02	89.945681 0.98	89.998518 0.86	90.043264 1.01	90.087711 1.08	90.083166 1.08	90.125410 0.97	90.077527 1.20	90.093744 0.95	110110 00
σ0 in "	2.30	3 2.30	5 2.30	3 2.30	5 2.30	5 2.30	3 2.30	2.30	5 2.30	3 2.30	2.30	t 2.30	3 2.30	3 2.30	, 2.30	t 2.30	3 2.30	3 2.30	5 2.30	t 2.30	2.30	2.30	9 2.30	3 2.30	3 2.30	t 2.30	2.30	
v0 ° ri	90.08443	89.91470	89.95173(90.05283	89.95948(89,909306	89.948278	90,05579;	90.005236	89.92470	90.01597;	89,98069	90.007278	89.879208	89.91991;	89.91276	89.960278	89.99570	89.98780(89.94576	89,99793.	90,04329,	90.08731	90.082708	90.12640	90.07744	90-093292	
th in m	1.551000	1.605000	0.241100	0.237200	1.605000	1.561500	0.236400	0.241100	1.605000	1.561500	1.551000	0.235300	0.234900	1.605000	0.237200	0.235600	0.235300	0.234900	1.564000	1.561500	0.236400	0.241100	0.237200	0.235600	1.551000	0.236400	0.241100	
ri n	0.237000	0.237000	0.237000	0.240900	0.240900	0.240900	0.240900	0.236200	0.236200	0.236200	1.564000	1.564000	1.564000	1.551000	1.551000	1.551000	1.551000	1.551000	1.551000	1.605000	1.605000	1.605000	1.605000	1.605000	1.605000	1.561500	1.561500	
Target-Id	B1	C1	ST8	ST6	C1	D1	ST10	ST8	C1	D1	B1	ST2	ST0	C1	ST6	ST4	ST2	ST0	A1	D1	ST10	ST8	ST6	ST4	B1	ST10	ST8	2
Station-Id	ST6	ST6	ST6	ST8	ST8	ST8	ST8	ST10	ST10	ST10	A1	A1	A1	B1	B1	B1	B1	B1	B1	C1	C1	C1	C1	C1	C1	D1	D1	2

Observation Group: Zenith_angles_E1 (A-priori: $\sigma_a = 2.30$ ")

Unknown Group Parameter

Observation Group	Parameter Type	Value	b	a	T ≤ q H _C
Directions_set_E1 (ST0)	Orientation	21.351863 °	0.81 "	1.59 "	×
Directions_set_E1 (ST2)	Orientation	299.590466 °	. 69'0	1.34 "	×
Directions_set_E1 (ST4)	Orientation	79.622106 °	0.74 "	1.46 "	×
Directions_set_E1 (ST6)	Orientation	128.687060 °	0.74 "	1.45 "	×
Directions_set_E1 (ST8)	Orientation	73.900039 °	0.68 ″	1.33 "	×
Directions_set_E1 (ST10)	Orientation	53.459896 °	0.81 "	1.58 "	×

Observation Group	Parameter Type	Value	b	IJ	$T \le q \mid H_0$
Directions_set_E1 (A1)	Orientation	8.986362 °	0.80 "	1.57 "	×
Directions_set_E1 (B1)	Orientation	129.368234 °	0.65 "	1.28 "	×
Directions_set_E1 (C1)	Orientation	225.692299。	0.54 "	1.05 "	×
Directions_set_E1 (D1)	Orientation	38.156974 °	0.80 "	1.57 "	×
Zenith_angles_E1	Refraction	-0.35	0.07	0.15	×
Additional Unknown Parameter					

Reliability of terrestrial observations

Observation Group	Observation Type	Station-Id	Target-Id	rmin in %	ravg in %	
Directions_set_E1 (ST6)	Directions	ST6	ST8	59.04	69.45	
Slope_distance_E1	Slope Distances	ST4	ST2	52.30	59.99	
Zenith_angles_E1	Zenith Angles	D1	ST10	66.33	73.68	
Summary of redundancy r						
Observation Group	Observation Type	Station-Id	Target-Id	log(p _{pr}	io,min)	log(p _{prio,avg})
Directions_set_E1 (ST8)	Directions	ST8	CI	-2.	30	-0.83
Slope_distance_E1	Slope Distances	ST6	ST4	-3.	10	-0.74
Zenith_angles_E1	Zenith Angles	ST6	ST8	н Ч	54	-0.99

Summary of (a-priori) probability value p

			larget-10	in mm	in mm
Directions_set_E1 (B1) Direc	tions	B1	ST0	-0.15	0.04
Slope_distance_E1 Slope	Distances	ST6	C1	0.38	0.13
Zenith_angles_E1 Zenit	h Angles	ST6	ST8	1.92	0.63

Summary of influence on point position due to an undetected gross-error EP

Distribution of influence on point position due to an undetected gross-error EP (Mean interval: {EP | 1.00 mm ≤ EP ≤ 5.00 mm})

Distribution of (a-priori) probability value p-value (Mean interval: {p-value $| 1.00 \% \le p$ -value $\le 5.00 \%$ })

Java-Applied-Geodesy-3D – © Michael Lösler – <u>software.applied-geodesy.org</u> ...: Least-Squares Adjustment Software for Geodetic Sciences ::...

Prilog 3. Deformacijska analiza

Java·Applied·Geodesy·3D - Report

Least-Squares Adjustment & Deformation Analysis

v20240105

Project

JAG3D Version: Name of Project: Project Id: Customer Id: Person in Charge: Date of Calculation: Date of Report: Kind of network: Adjustment Type: Coordinate frame:

Probability Value α: Test Power (1-β): Description:

Least squares adjustment (L₂Norm) Local Cartesian model • Earth radius: R₀ = 6371007.0000 m • Earth's curvature reduction 5.00 % 80.00 %

2024-03-14 2024-03-26 linked network

B-Method (Baarda)

q (F _{d1,d2,1-a})	38.96	38.48	38.48	13.62	13.44	13.44	10.30	1.84	1.76	1.62	1.59	1.19	
log(p _{d1,d2})	-21.56	-19.23	-19.22	-18.77	-16.46	-16.43	-17.75	-7.27	-6.88	-6.14	-5.96	-3.00	
λ (α,β)	50.18	50.18	50.18	50.18	50.18	50.18	50.18	50.18	50.18	50.18	50.18	50.18	
$(1 - \beta)$ in %	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	
a n %	00.00	00.00	00.00	0.00	00.00	00'0	0.00	0.07	0.10	0.22	0.26	5.00	
d2	8	162.00	161.00	8	162.00	159.00	8	8	8	8	8	8	
d1	1.00	1.00	1.00	3.00	3.00	3.00	4.06	42.65	46.71	56.29	59.00	162.00	

Test statistics Φ^{-1} w.r.t. the degree of freedom dt and d2, respectively

Variance Component Estimation

 Group name
 n_G r_G Ω_G $1: \sigma^2_G$ $q(F_{r,\infty,1-\sigma})$ $T_G \leq q \mid H_0$

 Total Adjustment
 232
 162:00
 148.02
 0.91
 1.19
 V

 Directions
 79
 56.29
 57.31
 1.02
 1.62
 V

New Points: New points E

Group name	Ű	ŋ	ΩG	1 : 0 ⁴ G	q $(F_{\Gamma,\infty,1-d})$	T _G ≤ q H
Directions σ _a	79	56.29	57.31	1.02	1.62	>
Slope Distances	76	46.71	37.22	0.80	1.76	>
Slope Distances σ _a	76	42.65	33.84	0.79	1.84	>
Slope Distances σ_c	76	4.06	3.38	0.83	10.30	>
Zenith Angles	77	59.00	53.49	0.91	1.59	>
Zenith Angles σ _a	77	59.00	53.49	0.91	1.59	>
Vonionao Component Ectimo	tion					

Variance Component Est

Principal component analysis

 $\begin{array}{ccc} k & \sqrt{\lambda(k)} & \lambda(k)/\text{trace(Cxx)} \\ & & & \text{in mm} & & \text{in }\% \end{array}$

34.75 48 4.33

Principal component analysis

 $T \le q \mid H_0$ > > > 0.53 T_{post} 0.49 0.49 T_{prio} -0.41 -0.41 log(p_{post}) log(p_{prio}) -0.37 -6.90 6.90 $\nabla_{Z}(\lambda)$ in mm -0.00 $\nabla_X(\lambda)$ in mm -3.01 3.01 $\nabla_{y}(\lambda)$ in mm -0.97 0.97 $\nabla_{\rm Z}(1)$ in mm -0.00 0.00 $\nabla_X(1)$ in mm -0.42 0.42 $\nabla_y(1)$ in mm -1.18 **1.18** -1.18 $\nabla_{\rm Z}$ in mm -0.00 0.00 $\nabla_{\! X}$ in mm -0.51 **0.51** 0.51 ∇_{y} in mm 1000.8165 999<u>.</u>9794 North x0 Height z0 in m in m 9999.7953 10000.0022 9000.0077 10000.0036 **Reference Points: Reference points** East y0 in m Point Group: Reference points Code 0 0 Point-Id ST10 ST0

Point-Ic	d Code	East yO in m	North x0 in m	Height z0 in m	East y in m	North X in m	Height z in m ii	σ _y , in mm r	J _X C mm in I	₇ 2 а mm in r	d in mr	n mm n	o ui		β °	≻ °	∆ _y in mm	$\Delta_{\rm X}$ in mm	$\Delta_{\rm Z}$ in mm	ς _y in mm	S _X in mm	ς _z in mm	
токш		8999.9675 9298.5211 9699.0108 9967.8317	9797.4961 9797.6804 9797.9003 9798.7650	999.7608 999.4250 998.6204 998.6732	8999.9675 9298.5210 9699.0108 9967.8317	9797.4961 9797.6805 9797.9004 9798.7650	999.7608 999.4250 998.6204 998.6732	0.35 0 0.24 0 0.24 0 0.34 0	126 1 41 1 41 1 26 1	19 7 18 7 17 7 17 7 17 7	95 2.3 87 2.8 79 2.8 80 2.2	 1.71 1.71 1.41 1.39 1.73 	89.567 89.968(89.977(89.998(268 281 566 18 393 341. 557 277.	.261496 .226306 2 .313521 .104988	89.614452 69.914165 90.100098 90.017733	-0.00 -0.05 -0.01 -0.02	0.05 0.05 0.05 -0.03	0.02 -0.03 -0.03 0.01	0.00 -0.00 0.00	-0.00 -0.00 -0.00	-0.00 0.00 -0.00 0.00	
Point Grou	up: New po ints: Ney	ints E w points A																					
Point-Ic	Code	East y0 in m	North ×0 in m	Height z0 in m	East y in m	North X in m	Height z in m	σ _γ mm	σ _X mm	σ _z n mm ^{li}	a mm ir	b mm r	un c	0	e °	≻ °	Δ_{y} in mm	$\Delta_{\rm X}$ in mm	$\Delta_{\rm Z}$ in mm	Sy mm	S _X in mm	Sz in mm	
8 B	0 0	9967.8218 9699.0057	9798.7504 9797.8950	998.6710 998.6130	9967.8219 9699.0058	9798.7505 9797.8951	998.6710 998.6131	0.43 0.32	0.32 0.51	2.08	13 94 14 32	2 89 2 3 64 1	13 89.5 74 89.5	901573 176395	277.605633 338.081816	89.92123(270.062142	6 0.07 2 0.09	0.09	0.03	-0.00	-0.00	-1.02	
υQ	0 0	9298.5159 9000.0012	9797.6877 9797.4958	999 4286 999 7634	9298.5159 9000.0013	9797.6877 9797.4958	999.4287 999.7634	0.31 0.44	0.50 0.32	2.16	14 46 14 14	3.50 1 2.93 2.	79 89.5 13 89.3	979367 894416	19.872774 278.248971	89.91531 89.43448	2 0.03	0.01	0.08	-0.00	-0.00	-1.62	
New Po: Point-Id	ints: Poi	ints o East y0 in m	North x0 in m	Height z0 in m	East y in m	North X in m	Height z in m	in mg Mg	n m m	σ _z in mm	i. u mm u	d mm c		D°~	e .c	, ∼ ^o	Δ_{y} in mm	$\Delta_{\rm X}^{\rm in mm}$	$\Delta_{\rm Z}$ in mm	ي تا عم	S _X in mm	S _Z in mm	
ST8 ST6	0 0	9200.0148 9400.0329	9999.7830 9999.7830	1000.6242	9200.0138	9999.7862 9999.7862	1000.6256	0.34	0.47	2.16	14 46 15 30	3.15 2. 4.03 2.	30 89.5	952097	0.654900 3 19900	89.933667 80.05334	, -1.02 -0.64	3.23	3 1.42	-0.00	00.00	-1.50	
ST4 ST2		9799,9998	9999.9045 10000.0004	1000.2829 1000.0961	9799,9988	1000.0003 10000.0003	1000.2863 1000.0970	0.41	0.60 0.47	2 30 2 14	15.35 15.35 14.34	4 03 2 4 03 2 3 17 1	/ 8 89 8	956256 971139 2	8.550789 357.272927	269.988735 270.014173		3 3.81 -0.10	+ 3.01 1 3.36) 0.87	-0.00	-0.00	-1.69	
Point Grou	up: Points c ints: Poi	° ints 1																					
Point-Id	I Code	East y0 in m	North x0 in m	Height z0 in m	East y in m	North X in m	Height z in m	σ _y in mm	σ _X in mm	σ _z in mm	a in mm in	b mm in m	E C	0	g °	≻ °	Δ_{y} in mm	$\Delta_{\rm X}$ in mm	$\Delta_{\rm Z}$ in mm	Sy in mm	S _X in mm	ς _z in mm	
ST2_1 ST4_1	0 0	9799,9998 9599,9913	10000.0004 9999.9045	1000.0961 1000.2829	9799,9998 9599,9913	10000 0004 9999 9045	1000.0961 1000.2829	0.28	0.38	1.28	7.14 2 8.57 3	2 57 1 ⁴ 3 38 1 8	49 89.96 34 89.95	.9944 35 2147 35	7 559485 7 081354	90.035064 90.042299	-0.04 0.01	-0.02 0.02	0.01	-0.00	-0.00 0.00	0.00	
ST6_1	0	9400.0329	9999.8629	1000.4514	9400.0329	9999.8629	1000.4513	0.28	0.49	1.28	8.59	3.31 1.8	34 89 94	8071	1.870551	269.965241	0.00	0.04	-0.06	0.00	0.00	-0.00	
ST8 1	0	9200.0148	9999,7830	1000.6242	9200.0148	9999.7830	1000 6242	0.22	0.39	1.07	7.18 2	2.60 1.4	18 89.94	8437	1.004446	269.933440	-0.04	00.00	0.03	-0.00	00.00	-0.00	

-0.04 0.04 -0.06

Point Group: Points 1

povi
stul
iexus
int n
Po

	1																								
Point-Id in Reference Epoch	Point-Id in Control Epoch	δY in m	δX in m	δZ m ni	oγ mm	aX in mm	σ _Z in mm ir	a mm r	b mm i	um c	o <u>c</u>	و ە	≻ °	Δ _γ in mm	√X mm in	VZ Γ mm in	γ(λ) V mm	χ(λ) V _Z mm in	(V) log(r mm	o _{prio}) log((p _{post}) T	T T	post T	≤ q H ₀	
ST2	ST2_1	6000-0	0.0001	-0.0009	0.36	0.61	2.40 1	6.02 4	08 2	42 85	.970903	357.389257	270.018030	-0.93 -	0.08 C	.86 –	2.65 -	0.22 2.	45	2.25	-2.46	2.05	2.24	>	
ST4	ST4_1	0.0013	-0.0038	-0.0033	0.49	0.78	2.63 1	7.59 5	25 3	.26 85	9.955368	354.095966	90.018091	-1.33	3.79 3	.32 -	1.80	5.12 4	49 -1	- 2.29	12.39	9.17 1	0.04	>	
ST6	ST6_1	0.0006	-0.0062	-0.0057	0.50	0.78	2.64 1	7.62 5	21 3	.33 89	9.952982	2.574921	89.960659	-0.65	5.20 5	.67 -	0.57	5.47 5	E- 00	30.33 -	-27.52 2	1.47 2	3.50	×	
ST8	ST8_1	0.0010	-0.0032	-0.0014	0.41	0.61	2.41 1	6.14 4	08 2	.73 85	9.951505	0.828106	89.933624	-0.98	3.23 1	- 39	1.24	4.08 1	.76 –1	4.15 -	-14.08 1	0.45 1	1.44	>	
														-1.33	5.20 5	.67								×	
Deformation Vector	rs: Point nexus stur	ivot																							

Directions: 1	Directions set	t_E1 (ST0)																			
Station-Id	Target-Id	ri n m	th m	t0 in 。	o n "	in t	n "	r %	E in mgon	√ in mgon	in mm	EF SP in mm	abla(1) in mgon	V(λ) in mgon	С	log(p _{prio})	log(p _{post})	Tprio	Tpost	T≤q H ₀	
ST0	ш	0.2347	1.5640	167.731222	1.40	167.731202	0.80	64.50	-0.02	0.03	00'0	0.03	0.54	3.81	00-00	-0.05	-0.05	00.00	0.00	>	
ST0	ш	0.2347	1.5510	214.768458	1.40	214.768736	0.79	65.55	0.31	-0.47	0.00	0.28	-0.53	-3.78	0.51	-0.98	-1.03	0.78	0.85	>	
ST0	ST2_1	0.2347	0.2353	248.647889	1.40	248.647631	0.80	64.44	-0.29	0.45	0.05	0.37	0.54	3.81	0.44	-0.90	-0.95	0.68	0.75	>	
								1.94	0.31	-0.47					0.96					>	-
Observation Grou	in: Directions set	E1 (STo) (A-priv	ori: σ. = 1.40 ")	_																	

Directions:	Directions_set	_E1 (ST2)																		
Station-Id	Target-Id	h m	th in m	t0 in °	σ0 "	t °	р <u>п</u>	r %	5 in mgon	√ in mgon	EP mm	EF-SP in mm	abla(1) in mgon	∇(λ) in mgon	G	og(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
ST2_1	ST0	0.2351	0.2349	150,409236	1.40	150.409023	0.74	69.44	-0.24	0.34	0.06	0.45	0.52	3.67	0.30	-0.67	-0.71	0.43	0.47	>
ST2_1	ш	0.2351	1.5640	200.581069	1.40	200.581172	0.70	72.59	0.11	-0.16	-0.02	0.14	-0.51	-3.59	0.07	-0.28	-0-29	0.10	0.10	>
ST2_1	L	0.2351	1.5510	266.960250	1.40	266.960750	0.70	72.94	0.56	-0.76	-0.04	0.61	-0.51	-3.58	1.65	-2.02	-2.16	2.26	2.50	>
ST2_1	ST4_1	0.2351	0.2356	330.382472	1.40	330.382083	0.76	68.11	-0.43	0.63	0.14	0.93	0.52	3.71	1.00	-1.49	-1.58	1.47	1.62	>
								2.83	0.56	-0.76					3.02					~
Observation Gro	up: Directions_set_l	E1 (ST2) (A-prie	ori: $\sigma_a = 1.40$ ")																	

Directions:	Directions_set	t_E1 (ST4)																		
Station-Id	Target-Id	ri n m	th m m	t0 in °	σ0 " "	t °	р " _г	n %	۶ in mgon	n mgon	EP in mm	EF•SP in mm	V(1) i mgon r	V(λ) To mgon	G	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
ST4_1	ш	0.2354	1.5510	74 264444	1.40	74.264478	0.82	62.57	0.04	-0.06	-0.01	0.07	-0.55	-3.87	0.01	60'0-	-0.10	0.01	0.01	>
ST4_1	5	0.2354	1.6050	156.524486	1.40	156.524472	0.79	65.48	-0.02	0.02	00-00	0.01	0.53	3.78	00.00	-0.04	-0.04	00.00	0.00	>
ST4_1	ST6_1	0.2354	0.2372	190.366000	1.40	190.365980	0.81	63.21	-0.02	0.04	0.01	0.04	0.54	3.85	00.00	-0.05	-0.06	00"0	0.00	>
								1.91	0.04	-0.06					0.01					>
	Discotions out	P. (CT.) (A min	() · · · ·																	

Directions: Directions_set_E1 (ST6)

Station-Id	Target-Id	H n	in m	t0 in 。	a0 " "	in c	ii d	r %	E in mgon	Ω in mgon	EP in mm	EF-SP in mm	abla(1) in mgon	∇(λ) in mgon	G	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
ST6_1	ST4_1	0.2370	0.2356	321.301375	1.40	321.301281	0.75	68.89	-0.10	0.15	0.03	0.21	0.52	3.69	0.06	-0.26	-0.27	0.09	0.09	>
ST6_1	щ	0.2370	1.5510	355.352056	1.40	355-352620	0.70	72.51	0.63	-0.86	-0.09	0.76	-0.51	-3.59	2.10	-2.42	-2.59	2.90	3.22	>
ST6_1	U	0.2370	1.6050	77.974292	1.40	77.973524	0.70	72.68	-0.85	1.17	0.10	1.00	0.51	3.59	3.90	-3.88	-4.20	5.36	6.05	>
ST6_1	ST8_1	0.2370	0.2411	141.290000	1.40	141.290298	0.76	68.10	0.33	-0.49	-0.11	0.71	-0.52	-3.71	0.59	-1.04	-1.10	0.86	0.95	>
								2.82	-0.85	1.17					6.65					>
Observation Grou	up: Directions_set	E1 (ST6) (A-pri-	ori: $\sigma_a = 1.40$ ")																	

		-	th	10	00	+	b	L	ω,	Δ	ЦЦ	FF.SP	Δ(1)	$\Delta(\lambda)$			-	ł	}	
Station-Id	Target-Id	а 	m ni	° LI	, ci	in °	, <u> </u>	in %	in mgon	in mgon	in m m	i ii	in mgon	in mgon	C	log(p _{prio})	log(p _{post})	Tprio	Tpost	H B V L
ST8_1	ST6_1	0.2409	0.2372	16.077292	1.40	16.077042	0.75	68.32	-0.28	0.41	0.08	0.59	0.52	3.70	0.41	-0.83	-0.87	09-00	0.66	7
ST8_1	U	0.2409	1.6050	80.115542	1.40	80.114991	0.70	72.88	-0.61	0.84	0.05	0.68	0.51	3.59	2.01	-2.33	-2.50	2.76	3.05	>
ST8_1	т	0.2409	1.5615	150.780653	1.40	150.781006	0.70	72.65	0.39	-0.54	-0.07	0.46	-0.51	-3.59	0.82	-1.25	-1.32	1.13	1.24	>
ST8_1	ST10	0.2409	0.2364	196.103014	1.40	196.103462	0.74	69.56	0.50	-0.72	-0.13	0.93	-0.52	-3.67	1.33	-1.79	-1.90	1.91	2.10	>
								2.83	-0.61	0.84					4.57					>

Directions:	Directions_set	E1 (ST10)	~																	
Station-Id	Target-Id	ri ri	th m	t0 in °	or " "	n t	n "	in %	E in mgon	nogm ni	EP in mm	EF-SP in mm	V(1) n mgon	ν mgon	с	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
ST10	ST8_1	0.2362	0.2411	36.543569	1.40	36.543609	0.80	64.19	0.04	-0.07	-0.01	0.06	-0.54	-3.82	0.01	-0.11	-0.11	0.02	0.02	>
ST10	U	0.2362	1.6050	70.640986	1.40	70.640891	0.79	65.59	-0.11	0.16	-0.00	60.0	0.53	3.78	0.06	-0.27	-0.28	0.09	0.10	7
ST10	н	0.2362	1.5615	126.551417	1.40	126.551473	0.80	64.10	0.06	-0.10	-0.01	60.0	-0.54	-3.82	0.02	-0.15	-0.16	0.03	0.03	>
								1.94	-0.11	0.16					0.09					~
Observation Gro	up: Directions_set_i	E1 (ST10) (A-pr	iori: $\sigma_a = 1.40$ ",	0																

Directions	s: Directions_se	t_E1 (A)																			
Station-I	d Target-Id	ri n	th ⁿ m	t0 °	σ0 ″ п	in t	n "	in %	E in mgon	n mgon	EP in mm	EF•SP in mm	abla(1) in mgon	$\nabla(\lambda)$ in mgon	С	log(p _{prio})	log(p _{post})	Tprio	T _{post}	$T \le q \mid H_0$	
ш	L	1.5640	1.5510	260.829028	1.40	260.829378	0.80	64.53	0.39	-0.60	-0.04	0.49	-0.54	-3.81	0.81	-1.33	-1.41	1.25	1.37	>	
ш	ST2_1	1.5640	0.2353	311.185500	1.40	311.185288	0.78	65.86	-0.24	0.36	0.02	0.18	0.53	3.77	0.30	-0.69	-0.73	0.45	0.49	>	
ш	ST0	1.5640	0.2349	0.096847	1.40	0.096710	0.80	64.41	-0.15	0.24	0.02	0.20	0.54	3.81	0.12	-0.42	-0.44	0.19	0.21	7	
								1.95	0.39	-0"00					1.23					>	-
Observation C	Froup: Directions set	E1 (A) (A-prior	i: $\sigma_a = 1.40$ ")																		

Directions: Directions_set_E1 (B)

Station-Id	Target-Id	di n	th in m	t0 in °	a0 " i	i t °	, c	r in %	E in mgon	√ in mgon	in m	EF-SP in mm	abla(1) in mgon	∇(λ) in mgon	C	log(p _{prio})	log(p _{post})	T _{prio}	T _{post}	T ≤ q H ₀
ш	U	1.5510	1.6050	140.600542	1.40	140.599980	0.59	80.33	-0.62	0.78	0.10	0.75	0.48	3.41	2.09	-2.23	-2.39	2.60	2.88	>
L	ST6_1	1.5510	0.2372	174.670389	1.40	174.670864	0.58	81.23	0.53	-0.65	-0.07	0.53	-0.48	-3.40	1.49	-1.74	-1.85	1.84	2.02	>
ш	ST4_1	1.5510	0.2356	204.518556	1.40	204.518024	0.58	81.42	-0.59	0.73	0.06	0.56	0.48	3.39	1.87	-2.05	-2.18	2.30	2.54	>
L	ST2_1	1.5510	0.2353	257.182917	1.40	257.182645	0.57	81.56	-0.30	0.37	0.03	0.28	0.48	3.39	0.49	-0.82	-0.87	0.60	0.65	>
L	ST0	1.5510	0.2349	286.751958	1.40	286.752024	0.58	81.35	0.07	-0-09	-0.01	0.07	-0.48	-3.39	0.03	-0.16	-0.17	0.04	0.04	>
Ŀ	ш	1.5510	1.5640	320.446333	1.40	320.447157	0.60	79.92	0.92	-1.15	-0.18	1.18	-0.48	-3.42	4.49	-4.03	-4.37	5.62	6.36	>
								4.86	0.92	-1.15					10.46					>
Observation Grou	np: Directions_set	E1 (B) (A-prior	i: σ _a = 1.40 ")																	

Directions:	Directions_set	E1 (C)																		
Station-Id	Target-Id	hi n	th n	t0 °	a0 " ui	ii ¢	ت "	r %	E in mgon	⊽ in mgon	EP in mm	EF-SP in mm	∇(1) in mgon	V(λ) in mgon	С	log(p _{prio})	log(p _{post})	T _{prio}	Tpost	T ≤ q H ₀
U	т	1.6050	1.5615	44.272153	1.40	44.272314	0.60	80.17	0.18	-0.22	-0.04	0.22	-0.48	-3.42	0.17	-0.44	-0.46	0.21	0.23	>
U	ST10	1.6050	0.2364	78.408958	1.40	78.408490	0.58	81.37	-0.52	0.64	0.07	0.50	0.48	3.39	1.45	-1.70	-1.81	1.78	1.96	>
IJ	ST8_1	1.6050	0.2411	108.322181	1.40	108.322736	0.57	81.56	0.62	-0.76	-0.06	0.56	-0.48	-3.39	2.04	-2.17	-2.32	2.50	2.77	>
G	ST6_1	1.6050	0.2372	160.968556	1.40	160.968014	0.58	81.44	-0.60	0.74	0.06	0.57	0.48	3.39	1.94	-2.10	-2.24	2.39	2.64	>
IJ	ST4_1	1.6050	0.2356	190.454083	1.40	190.454262	0.58	81.26	0.20	-0.25	-0.03	0.20	-0.48	-3.40	0.21	-0-50	-0.52	0.26	0.29	>
U	ш	1.6050	1.5510	224.276111	1.40	224.276226	0.59	80.42	0.13	-0.16	-0.02	0.15	-0.48	-3.41	0.09	-0.30	-0.31	0.11	0.12	>
								4.86	0.62	-0.76					5.91					~
Observation Gro	up: Directions set 1	E1 (C) (A-priori	i: a. = 1.40 ")																	

Station-Id	Target-Id	ri m	th in m	t0 °	00 " ii	t °	р <u>п</u>	r in %	۶ in mgon	ν in mgon	EP in mm	EF-SP in mm	∇(1) in mgon	∇(À) in mgon	С	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
Ŧ	ST10	1.5615	0.2364	321.854208	1.40	321.854396	0.79	64.74	0.21	-0.32	-0.02	0.25	-0.54	-3.80	0.23	-0.60	-0.63	0.36	0.39	>
-	ST8_1	1.5615	0.2411	6.524264	1.40	6.524076	0.78	65.97	-0.21	0.32	0.02	0.15	0.53	3.77	0.23	-0-59	-0.62	0.35	0.39	>
-	U	1.5615	1.6050	51.807639	1.40	51.807639	0.79	65.01	-0.00	0.00	00'0	00.00	0.54	3.80	00'00	-00	-0.00	00"0	00.00	>
								1.96	0.21	-0.32					0.47					>

	T ≤ q H ₀	>	>	>
	Tpost	2.17	0.00	
	Tprio	1.97	00.0	
	log(p _{post})	-1.95	-0.01	
	log(p _{prio})	-1.83	-0.01	
	S	1.26	00.0	2.53
	∇(λ) in mgon	4.10	4.06	
	$\nabla(1)$ in mgon	0.58	0.57	
	EF-SP in mm	0.71	00.00	
	EP in mm	0.08	-0.00	
	∏ Tumgon	0.81	0.01	-0.82
	E in mgon	-0.52	-0.00	0.52
	in %	63.86	65.27	1.93
	n "	0.86	0.84	
	t in °	180.738116	227.773315	
	a0 in ″	1.50	1.50	
	t0 in °	180.738583	227.773319	
	th m	1.6120	1.6255	
_E0 (ST0)	i i	0.2346	0.2346	
: Directions_set	1 Target-Id	A	8	
Directions	Station-Ic	ST0	ST0	

Station-Id	Target-Id	h n	in th	t0 in °	a0 in "	t in °	d	r in %	E in mgon	V in mgon	EP in mm	EF-SP in mm	abla(1) in mgon	∇(λ) in mgon	С	log(p _{prio})	log(p _{post})	T _{prio}	Tpost	T ≤ q H ₀
ST0	ST2	0.2346	0.2350	261.651972	1.50	261.652443	0.86	63.86	0.52	-0.82	-0.11	0.71	-0.58	-4.10	1.28	-1.85	-1.97	2.00	2.20	7
								1.93	0.52	-0.82					2.53					~
Observation Grou	p: Directions_set_E	30 (ST0) (A-pri	ori: $\sigma_a = 1.50$ ")																	

e S

_	
(ST2	
EO	
set	
tions	
Direc	
ons:]	
rectio	
D	

ST2 ST0 0.2348 0.075403 1.50 0.075224 0.81 68.08 -0.20 0.29 0.07 0.40 0.56 3.97 0.18 -0.51 -0.53 0.23 0.23 ST2 A 0.2348 1.6120 50.250639 1.50 50.250904 0.76 71.95 0.24 -0.06 0.37 -0.55 -3.87 0.41 -0.79 -0.83 0.56 ST2 B 0.2348 1.6120 50.250904 0.76 71.95 0.24 -0.05 0.37 -0.55 -3.87 0.41 -0.79 -0.83 0.56 -1.30 1.11 ST2 B 0.2348 1.6626931 1.50 116.627304 0.76 72.7 0.41 -0.57 -0.05 0.57 -3.87 0.41 -0.79 -1.33 1.11 ST2 B 0.2348 1.6626931 1.50 180.049415 0.83 66.40 -0.57 -0.05 0.57 -0.54 -3.87 0.41 -1.73 1.13 1.14 ST4 0.2348 0.2381 180.0498	Station-Id	Target-Id	di ni m	th in m	t0 in °	σ0 in ″	t in °	n "	r in %	E in mgon	∏ Tumgon	EP in mm	EF-SP in mm	∇(1) in mgon	V(λ) in mgon	G	log(p _{prio})	log(p _{post})	Tprio	T _{post}	T ≤ q F
ST2 A 0.2348 1.6120 50.250639 1.50 50.250904 0.76 71.95 0.29 -0.41 -0.06 0.37 -0.55 -3.87 0.41 -0.79 -0.83 0.56 ST2 B 0.2348 1.6255 116.626931 1.50 116.627304 0.76 72.27 0.41 -0.57 -0.05 0.50 -0.54 -3.86 0.80 -1.23 -1.30 1.11 ST2 ST4 0.2348 1.6255 116.626931 1.50 116.627304 0.76 72.27 0.41 -0.57 -0.05 0.50 -0.54 -3.86 0.80 -1.23 -1.30 1.11 ST4 0.2348 0.2381 180.049875 1.50 180.049415 0.83 66.40 -0.51 0.77 0.19 1.18 0.57 4.02 1.22 -1.74 -1.85 1.84 ST7 0.37 0.31 0.77 0.19 1.18 0.57 4.02 1.22 -1.74 -1.85 1.84 ST61 2.79 0.51 0.77 0.19 1.1	ST2	ST0	0.2348	0.2348	0.075403	1.50	0.075224	0.81	68.08	-0.20	0.29	0.07	0.40	0.56	3.97	0.18	-0.51	-0-53	0.27	0.29	>
ST2 B 0.2348 1.6255 116.626931 1.50 116.627304 0.76 72.27 0.41 -0.57 -0.05 0.56 -3.86 0.80 -1.23 -1.30 1.11 ST2 ST4 0.2348 0.2348 0.2381 180.049875 1.50 180.049415 0.83 66.40 -0.51 0.77 0.19 1.18 0.57 4.02 1.22 -1.85 1.84 ST2 ST4 0.2348 0.2381 180.049875 1.50 180.049415 0.83 66.40 -0.51 0.77 0.19 1.18 0.57 4.02 1.22 -1.85 1.84 ST2 2.79 -0.51 0.77 0.19 1.18 0.57 4.02 1.22 -1.85 1.84	ST2	A	0.2348	1.6120	50.250639	1.50	50.250904	0.76	71.95	0.29	-0.41	-0.06	0.37	-0.55	-3.87	0.41	-0-79	-0.83	0.56	0.62	>
ST2 ST4 0.2348 0.2381 180.049875 1.50 180.049415 0.83 66.40 -0.51 0.77 0.19 1.18 0.57 4.02 1.22 -1.85 1.84 2.79 -0.51 0.77 0.19 1.18 0.57 4.02 1.24 -1.85 1.84	ST2	8	0.2348	1.6255	116.626931	1.50	116.627304	0.76	72.27	0.41	-0.57	-0.05	0.50	-0.54	-3.86	0.80	-1.23	-1.30	1.11	1.22	>
2,79 -0.51 0.77 2.61	ST2	ST4	0.2348	0.2381	180.049875	1.50	180.049415	0.83	66.40	-0.51	0.77	0.19	1.18	0.57	4.02	1.22	-1.74	-1.85	1.84	2.02	>
									2.79	-0.51	0.77					2.61					>

Directions: 1	Directions_se	t_E0 (ST4)																		
Station-Id	Target-Id	Ч ш	th ⁱⁿ m	t0 in °	a0 " n	t in °	n "	r %	E in mgon	Ω in mgon	in mm	EF-SP in mm	∇(1) in mgon	∇(λ) in mgon	C	log(p _{prio})	log(p _{post})	T _{prio}	Tpost	T ≤ q H ₀
ST4	ST2	0.2379	0.2350	6.277556	1.50	6.277546	0.83	66.12	-0.01	0.02	00-00	0.03	0.57	4.03	00.00	-0-02	-0.02	00-00	0.00	7
ST4	8	0.2379	1.6255	70.192556	1.50	70.192339	0.76	71.74	-0.24	0.34	0.04	0.32	0.55	3.87	0.27	-0.62	-0-65	0.38	0.41	>
ST4	U	0.2379	1.6585	152.451569	1.50	152.451262	0.76	71.92	-0.34	0.47	0.06	0.43	0.55	3.87	0.54	-0-95	-1.01	0.75	0.82	>
ST4	ST6	0.2379	0.2377	186.292139	1.50	186.292673	0.82	67.01	0.59	-0.88	-0.25	1.30	-0.57	-4.01	1.64	-2.14	-2.28	2.45	2.71	>
								2.77	0.59	-0.88					2.45					~
Observation Gro	up: Directions_set_	Eo (ST4) (A-pri	iori: $\sigma_a = 1.50$ ")																	

Station-Id	Target-Id	ri m	th in m	t0 in。	σ0 "	t o	n "	in %	n mgon	∏ Tumgon	EP in mm	EF•SP in mm	abla(1) in mgon	V(λ) in mgon	G	og(p _{prio})	log(p _{post})	Tprio	T _{post}	$T \le q \mid H_0$
ST6	ST4	0.2375	0.2381	0.089389	1.50	0.088704	0.83	66.60	-0.76	1.14	0.33	1.73	0.57	4.02	2.71	-3.13	-3.37	4.06	4.54	>
ST6	в	0.2375	1.6255	34.141111	1.50	34.141253	0.76	71.85	0.16	-0.22	-0.03	0.20	-0.55	-3.87	0.12	-0-38	-0.39	0.16	0.18	>
ST6	U	0.2375	1.6585	116.761250	1.50	116.761390	0.77	71.53	0.16	-0.22	-0.03	0.21	-0.55	-3.88	0.11	-0.37	-0.39	0.16	0.17	>
ST6	ST8	0.2375	0.2417	180.075778	1.50	180.076181	0.84	65.89	0.45	-0.68	-0.19	1.07	-0.57	-4.04	0.94	-1.46	-1.54	1.42	1.56	>
								2.76	-0.76	1.14					3.87					>

Directions: Directions_set_Eo (ST8)

					_
T ≤ q H ₀	>	>	>	>	>
Tpost	1.01	09.0	0.48	1.17	
Tprio	0.92	0.55	0.44	1.06	
log(p _{post})	-1.15	-0-83	-0.71	-1.27	
log(p _{prio})	-1.09	-0.78	-0-68	-1.20	
С	0.61	0.40	0.32	0.72	2.05
∇(λ) in mgon	4.03	3.86	-3.87	-3.98	
$\nabla(1)$ in mgon	0.57	0.55	-0.55	-0.56	
EF-SP in mm	0.84	0.36	0.33	0.80	
EP in mm	0.14	0.04	-0.06	-0.13	
√ in mgon	0.54	0.41	-0.36	-0.58	-0.58
E in mgon	-0.36	-0.29	0.26	0.39	0.39
r %	66.35	72.04	71.98	68.00	2.78
n "	0.83	0.76	0.76	0.81	
t in 。	0.113606	64.152904	134.812942	180.139952	
a0 " u	1.50	1.50	1.50	1.50	
t0 in °	0.113931	64.153167	134.812708	180.139597	
th in m	0.2377	1.6585	1.5840	0.2369	
di di	0.2415	0.2415	0.2415	0.2415	
Target-Id	ST6	U	٥	ST10	
Station-Id	ST8	ST8	ST8	ST8	

<u> </u>
ñ
÷.
o _a
÷-
. 2
8
<u>e</u> .
-
3
\sim
s
E -
S
\sim
0
EL .
*
š
50
E
ion
tion
ection
rection
Direction
Direction
p: Direction
up: Direction
oup: Direction
roup: Direction
Group: Direction
n Group: Direction
on Group: Direction
tion Group: Direction
ation Group: Direction
vation Group: Direction
ervation Group: Direction
servation Group: Direction
bservation Group: Direction
Observation Group: Direction
Observation Group: Direction

Station-Id Target-Id in th t0 o0 t o Station-Id Inm Inm In In In In In In Station-Id ST10 ST8 0.2367 0.2417 0.134097 1.50 0.134037 0.87 ST10 C 0.2367 1.6585 34.231292 1.50 90.133259 0.87 ST10 D 0.2367 1.5840 90.133553 1.50 90.133259 0.87																					
ST10 ST8 0.2367 0.2417 0.134097 1.50 0.134037 0.87 ST10 C 0.2367 1.6585 34.231292 1.50 34.231745 0.84 ST10 D 0.2367 1.5840 90.133653 1.50 90.133559 0.87	Station-Id	Target-Id	н с ш	th in m	t0 in °	σ0 in "	t °	n "	in %	E in mgon	Ω in mgon	EP in mm	EF-SP in mm	∇(1) in mgon	∇(λ) in mgon	G	log(p _{prio})	log(p _{post})	Tprio	Tpost	T≤q H ₀
ST10 C 0.2367 1.6585 34.231292 1.50 34.231745 0.84 ST10 D 0.2367 1.5840 90.133653 1.50 90.133259 0.87	ST10	ST8	0.2367	0.2417	0.134097	1.50	0.134037	0.87	63.47	-0.07	0.10	0.01	0.10	0.58	4.12	0.02	-0.15	-0.16	0.03	0.04	>
ST10 D 0.2367 1.5840 90.133653 1.50 90.133259 0.87	ST10	U	0.2367	1.6585	34.231292	1.50	34.231745	0.84	65.27	0.50	-0.77	00.00	0.48	-0.57	-4.06	1.18	-1.73	-1.84	1.81	2.00	>
	ST10	٥	0.2367	1.5840	90.133653	1.50	90.133259	0.87	63.20	-0.44	0.69	0.08	0.67	0.58	4.13	0.89	-1.45	-1.54	1.41	1.55	>
									1.92	0.50	-0.77					2.10					>

Station-Id	Target-Id	ri E	th n m	to °	a0 " ni	i t	p "	in %	E in mgon	V in mgon	EP in mm	EF•SP in mm	$\nabla(1)$ in mgon	$\nabla(\lambda)$ in mgon	С	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
٨	B	1.6120	1.6255	0.120056	1.50	0.120174	0.86	63.96	0.13	-0.21	-0.02	0.18	-0.58	-4.10	0.08	-0.32	-0.34	0.13	0.14	>
A	ST2	1.6120	0.2350	50.477375	1.50	50.477639	0.84	65-59	0.29	-0.45	-0.03	0.24	-0.57	-4.05	0.40	-0.83	-0.88	0.61	0.67	>
A	ST0	1.6120	0.2348	99.388014	1.50	99.387632	0.86	63.68	-0.42	0.67	0.06	0.60	0.58	4.11	0.84	-1.38	-1.47	1.32	1.45	~
								1.93	-0.42	0.67					1.32					~

Directions: Dir	ections_set	_Eo (B)																			
Station-Id	Target-Id	ri n	th m	t0 in 。	a0 " u	t °	in "	in %	۶ in mgon	√ in mgon	EP in mm	EF-SP in mm	abla(1) in mgon	∇(λ) in mgon	С	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀	
В	0	1.6255	1.6585	6.508847	1.50	6.508589	0.66	78.84	-0.29	0.36	0.08	0.40	0.52	3.69	0.38	-0.72	-0.76	0.49	0.53	>	
8	3Т6	1.6255	0.2377	40.579236	1.50	40.579576	0.64	79.97	0.38	-0.47	-0.08	0.45	-0.52	-3.67	0.67	-1.02	-1.07	0.83	0.91	>	
8	574	1.6255	0.2381	70.426542	1.50	70.426693	0.64	80.19	0.17	-0.21	-0.03	0.19	-0.52	-3.66	0.13	-0.38	-0-39	0.16	0.18	>	
2)	5T2	1.6255	0.2350	123.089750	1.50	123.089789	0.64	80.28	0.04	-0.05	-0.01	0.05	-0.52	-3.66	0.01	-00	-0-00	0.01	0.01	>	
8	5T0	1.6255	0.2348	152.659097	1.50	152.658582	0.64	80.16	-0.57	0.71	0.12	0.66	0.52	3.66	1.53	-1.79	-1.90	1.91	2.10	>	
B	-	1.6255	1.6120	186.355681	1.50	186.355924	0.67	78.45	0.27	-0.34	-0.08	0.40	-0.52	-3.70	0.34	-0.67	-0.71	0.43	0.47	>	
								4.78	-0.57	0.71					3.06					~	-

Observation Group: Directions_set_E0 (B) (A-priori: σ_a = 1.50 '')

$\widehat{\mathbf{O}}$
EO
set
Directions
Directions:

≤ q H ₀	>	>	>	>	>	>	>
r _{post} 7	1.70	0.97	0.97	0.03	0.88	0.04	
Tprio	1.55	0.88	0.89	0.02	0.80	0.04	
log(p _{post})	-1.64	-1.12	-1.12	-0.13	-1.05	-0.17	
log(p _{prio})	-1.55	-1.06	-1.06	-0.13	66'0-	-0.16	
G	1.22	0.71	0.71	0.02	0.64	0.03	3.33
∇(λ) in mgon	-3.69	3.66	-3.66	3.67	3.66	3.69	
abla(1) in mgon	-0.52	0.52	-0.52	0.52	0.52	0.52	
EF-SP in mm	0.71	0.44	0.46	0.08	0.43	0.11	
EP in mm	-0.14	0.07	-0.07	0.01	0.08	0.02	
Ω in mgon	-0.65	0.49	-0.49	0.08	0.46	0.10	-0.65
E in mgon	0.51	-0.39	0.39	-0.06	-0.37	-0.08	0.51
r %	78.89	80.26	80.12	79.99	80.20	79.02	4.78
D "	0.66	0.64	0.64	0.64	0.64	0.66	
t in °	0.077530	34.214663	64.129907	116.775818	146.261722	180.084694	
or0 in "	1.50	1.50	1.50	1.50	1.50	1.50	
t0 in °	0.077069	34.215014	64.129556	116.775875	146.262056	180.084764	
th in m	1.5840	0.2369	0.2417	0.2377	0.2381	1.6255	
ri n m	1.6585	1.6585	1.6585	1.6585	1.6585	1.6585	
Target-Id	D	ST10	ST8	ST6	ST4	8	
Station-Id	U	U	U	U	c	U	

Directions: 1	Directions_set	E0 (D)																		
Station-Id	Target-Id	hi n	th n m	t0 °	a0 " ri	i t	p ï	in %	E in mgon	⊽ in mgon	EP m	EF=SP in mm	∇(1) in mgon	∇(λ) in mgon	G	log(p _{prio})	log(p _{post})	Tprio	Tpost	T ≤ q H ₀
۵	ST10	1.5840	0.2369	0.195583	1.50	0.195427	0.86	63.66	-0.17	0.27	0.03	0.25	0.58	4.11	0.14	-0.45	-0.47	0.22	0.24	>
٥	ST8	1.5840	0.2417	44.869306	1.50	44.869196	0.84	65.52	-0.12	0.19	0.01	0.10	0.57	4.05	0.07	-0.30	-0.31	0.11	0.12	>
٥	U	1.5840	1.6585	90.156514	1.50	90.156780	0.85	64.50	0.30	-0.46	-0.03	0.35	-0.58	-4.08	0.41	-0.85	-0.90	0.63	0.69	>
								1.94	0"30	-0.46					0.62					>
Observation Gro	up: Directions set E	Eo (D) (A-priori	i: a. = 1.50 ")																	

Slope Distances: Slope_distance_E1

	get-I			5T2_1	ST0	ш	ш	ST4_1	ST2_1	L	U	ST6_1	ST4_1	ш	IJ	
Ģ	Ē	0.2347	0.2347	0.2347	0.2351	0.2351	0.2351	0.2351	0.2354	0.2354	0.2354	0.2354	0.2370	0.2370	0.2370	
th	E E	1.5640	1.5510	0.2353	0.2349	1.5640	1.5510	0.2356	0.2353	1.5510	1.6050	0.2372	0.2356	1.5510	1.6050	
San0	n n	203.7928	362.5490	200.0037	200.0042	262.0366	225.9275	200.0086	200.0088	224.9685	363.0135	199.9588	199.9591	360.8002	226.2362	
οU	n n	0.41	0.44	0.41	0.41	0.42	0.42	0.41	0.41	0.42	0.44	0.41	0.41	0.44	0.42	
San	с, <u>п</u>	203.7927	362.5491	200.0039	200.0039	262.0367	225.9275	200.0086	200.0086	224.9681	363.0140	199.9585	199.9585	360.8004	226.2356	
b	in mm	0.26	0.23	0.22	0.22	0.25	0.25	0.24	0.24	0.26	0.24	0.22	0.22	0.24	0.25	
2	in %	56.90	69.98	67.77	67.77	61.81	60.22	63.40	63.40	58.18	66.24	70.07	70.07	66.37	59.88	
ú,	in mm	-0.13	0.09	0.17	-0.34	0.16	-0.01	-0.07	-0.20	-0.34	0.44	-0.31	-0.64	0.22	-0.61	
	, mm mm	0.24	-0.12	-0.25	0.50	-0.26	0.02	0.11	0.31	0.58	-0.67	0.44	0.91	-0.34	1.01	
ЪЪ	in m m	0.10	-0.04	-0.08	0.16	-0.10	0.01	0.04	0.12	0.24	-0.22	0.13	0.27	-0.11	0.41	
FF.SP	1 .E	0.91	0.37	0.83	1.66	0.92	0.08	0.40	1.11	2.17	2.13	1.42	2.93	1.08	3.73	
Δ(1)	in mm	0.55	-0.52	-0.50	0.50	-0.54	0.54	0.52	0.52	0.54	-0.54	0.49	0.49	-0.54	0.54	
Δ(Υ)	in mm	3.88	-3.72	-3.55	3.55	-3.79	3.79	3.67	3.67	3.86	-3.82	3.49	3.49	-3.82	3.81	
	C	0.11	0.04	0.17	0.67	0.15	00"0	0.03	0.23	0-66	1.01	0.56	2.42	0.26	2.13	
-	log(p _{prio})	-0.41	-0.20	-0.48	-1.14	-0.47	-0.03	-0.19	-0.61	-1.24	-1.53	-0.99	-2.76	-0.64	-2.83	
-	log(p _{post})	-0.43	-0.21	-0.50	-1.21	-0.45	-0-04	-0.20	-0-64	-1.32	-1.62	-1.05	-2.96	-0"0	-3.03	
ł	Tprio	0.19	0.05	0.25	0.99	0.24	00"0	0.05	0.37	1.13	1.52	0.80	3.45	0.40	3.56	
1	Tpost	0.20	0.06	0.27	1.08	0.26	00.00	0.05	0.40	1.24	1.67	0.88	3.84	0.43	3.96	
	T ≤ q H ₀	>	>	>	>	>	>	>	>	>	>	>	>	>	>	

Station-Id	Target-Id	ri n	th in a	s _{3D} 0 in m	a0 mm	S _{3D} in m	in mm	r %	e in mm	n mm	EP in mm	EF-SP in mm	$\nabla(1)$ in mm	$\nabla(\lambda)$ in mm	С	log(p _{prio})	log(p _{post})	Tprio	T _{post}	T ≤ q H ₀
ST8_1	ST6_1	0.2409	0.2372	200.0184	0.41	200.0182	0.24	63.52	-0.16	0.26	0.09	0.92	0.52	3.66	0.16	-0-48	-0.51	0.25	0.27	>
ST8_1	U	0.2409	1.6050	224.8310	0.42	224.8309	0.25	60.86	-0.02	0.03	0.01	0.11	0.53	3.77	00.00	-0-05	-0-05	00.00	0.00	>
ST8_1	н	0.2409	1.5615	284.4977	0.42	284.4980	0.25	62.91	0.30	-0.47	-0.18	1.64	-0.54	-3.79	0.49	-0.97	-1.03	0.78	0.85	>
ST8_1	ST10	0.2409	0.2364	200.0071	0.41	200.0071	0.22	68.42	0.09	-0.14	-0.04	0.45	-0.50	-3.53	0.05	-0-24	-0-26	0.08	0.08	>
ST10	ST8_1	0.2362	0.2411	200.0072	0.41	200.0071	0.22	68.42	-0.07	0.10	0.03	0.32	0.50	3.53	0.03	-0.17	-0.18	0.04	0.04	>
ST10	U	0.2362	1.6050	360.5007	0.44	360.5005	0.23	69.05	-0.22	0.32	0.10	0.98	0.53	3.74	0.25	-0.61	-0-64	0.37	0.40	>
ST10	н	0.2362	1.5615	202.2996	0.41	202.2993	0.26	56.37	-0.21	0.38	0.17	1.47	0.55	3.89	0.27	-0.71	-0-75	0.48	0.52	>
ш	L	1.5640	1.5510	268.8225	0.42	268.8223	0.26	57.76	-0.22	0.38	0.16	1.42	0.56	3.93	0.27	-0.71	-0.75	0.48	0.52	>
ш	ST2_1	1.5640	0.2353	262.0369	0.42	262.0367	0.25	61.81	-0.19	0.30	0.12	1.08	0.54	3.79	0.20	-0-56	-0-59	0.32	0.35	>
ш	STO	1.5640	0.2349	203.7928	0.41	203.7927	0.26	56.90	-0.12	0.21	60'0	0.81	0.55	3.88	60.0	-0.36	-0-38	0.15	0.16	>
ш	IJ	1.5510	1.6050	400.4908	0.45	400.4907	0.28	57.27	-0.10	0.17	0.07	0.59	0.59	4.19	0.05	-0.25	-0-26	0.08	60.0	>
ш	ST6_1	1.5510	0.2372	360,7999	0.44	360.8004	0.24	66.37	0.53	-0.80	-0.27	2.55	-0.54	-3.82	1.47	-1.99	-2.12	2.21	2.44	>
ш	ST4_1	1.5510	0.2356	224,9681	0.42	224.9681	0.26	58.18	0.03	-0.06	-0.02	0.22	-0.54	-3.86	0.01	-0.09	60-0-	0.01	0.01	>
ш	ST2_1	1.5510	0.2353	225,9273	0.42	225,9275	0.25	60.22	0.12	-0.20	-0.08	0.73	-0.54	-3.79	0.08	-0.34	-0-36	0.14	0.15	>
ш	ST0	1.5510	0.2349	362.5489	0.44	362.5491	0.23	69.98	0.20	-0.29	-00	0.88	-0.52	-3.72	0.22	-0-55	-0-58	0.31	0.34	>
ш	ш	1.5510	1.5640	268.8222	0.42	268.8223	0.26	57.76	0.12	-0.21	60'0-	0.79	-0.56	-3.93	0.08	-0.35	-0.37	0.15	0.16	>
U	т	1.6050	1.5615	298.5538	0.43	298.5538	0.27	57.60	-0.05	0.09	0.04	0.32	0.56	3.99	0.01	-0.13	-0.14	0.02	0.03	>
IJ	ST10	1.6050	0.2364	360.5003	0.44	360.5005	0.23	69.05	0.20	-0.29	60.0-	0.88	-0.53	-3.74	0.20	-0.53	-0-56	0.29	0.32	>
U	ST8_1	1.6050	0.2411	224.8309	0.42	224.8309	0.25	60.86	0.07	-0.11	-0.04	0.41	-0.53	-3.77	0.03	-0.18	-0.19	0.04	0.05	>
IJ	ST6_1	1.6050	0.2372	226.2357	0.42	226,2356	0.25	59.88	-0.12	0.21	0.08	0.76	0.54	3.81	60.0	-0.36	-0.37	0.15	0.16	>
IJ	ST4_1	1.6050	0.2356	363.0135	0.44	363.0140	0.24	66.24	0.46	-0.70	-0.24	2.23	-0.54	-3.82	1.11	-1.63	-1.73	1.67	1.84	>
U	ш	1.6050	1.5510	400.4908	0.45	400.4907	0.28	57.27	-0.12	0.22	0.09	0.77	0.59	4.19	0.08	-0-34	-0-36	0.14	0.15	>
н	ST10	1.5615	0.2364	202.2992	0.41	202.2993	0.26	56.37	0.15	-0.27	-0.12	1.04	-0.55	-3.89	0.14	-0.47	-0.49	0.24	0.26	>
т	ST8_1	1.5615	0.2411	284.4981	0.42	284.4980	0.25	62.91	-0.11	0.18	0.07	0.62	0.54	3.79	0.07	-0.31	-0.32	0.11	0.12	>
т	IJ	1.5615	1.6050	298.5539	0.43	298.5538	0.27	57.60	-0.19	0.33	0.14	1.23	0.56	3.99	0.20	-0-59	-0.62	0.35	0.38	>
								25.09	-0.64	1.01					14.67					>
Observation Gro	up: Slope_distance_	E1 (A-priori: σ_a	= 0.40 mm, σ_c	= 0.50 ppm)																

 $T \le q \mid H_0$ > > 0.39 1.16 2.95 3.49 4.23 0.03 T_{post} 1.23 0.01 3.14 1.12 3.79 0.35 1.06 2.67 0.02 0.01 Tprio -3.19 -0.62 -0.09 -1.26 -2.43 -2.76 -0.14 -1.31log(p_{post}) -0.59 -1.19-2.28 -1.24 -2.96 -0.08 -2.57 -0.13 log(p_{prio}) **0.01** 22.55 2.65 0.23 0.66 1.67 1.22 0.64 0.01 Ci 4.59 4.46 -4.46 4.63 5.79 4.69 4.77 4.50 ∇(Å) In mm 0.63 -0.63 0.65 0.65 0.82 0.66 0.64 0.67 $\nabla(1)$ in mm 0.18 1.92 3.05 5.36 0.30 2.20 1.04 3.08 EF-SP in mm 0.13 -0.02 0.25 0.40 0.88 0.04 0.30 0.37 EP 0.10 1.48 1.45 1.06 1.24 0.37 -0.06 0.67 0.71 ⊿ um u -0.56 -0.06 -0.41-0.87 -0.25 0.04 -0.42 -0.66 -1.00ε mm ui 62.55 38.95 59.92 57.51 69.98 65.69 65.69 62.55 21.62 r in % 0.28 0.29 0.29 0.30 0.30 0.38 0.31 0.32 in mm 200.0048 200.0048 203.8085 262.0421 225.9339 200.0090 224.9746 362.5562 S_{3D} in m 0.53 0.51 0.51 0.52 0.51 0.51 0.51 0.51 σ0 in mm 200.0050 200.0048 262.0425 203.8089 362.5570 225 9346 224.9747 200.0095 s_{3D}0 in m 1.6120 1.6255 0.2350 0.2348 1.6120 1.6255 1.6255 0.2381 in m Slope Distances: Slope_distance_E0 0.2346 0.2346 0.2346 0.2348 0.2348 0.2348 0.2379 0.2348 h n Target-Id ST2 ST0 A B ST4 B < 6 Station-Id ST0
ST0
ST2
ST2
ST2
ST2
ST2
ST2
ST4

Station-Id	Target-Id	hi n	th in m	s _{3D} 0 in m	o0 mm	S _{3D} in m	in mm	r in %	s in mm	n mm	EP mm in	n mm	7(1) mm r	л mm л	G	og(p _{prio})	log(p _{post})	Tprio	T _{post}	r≤q H ₀
ST4	U	0.2379	1.6585	363.0153	0.53	363.0153	0.30	65.64	0.01	-0.02	-0.01	0.05	-0.66	-4.65	00.00	-0.02	-0-03	00-00	00.00	>
ST4	ST6	0.2379	0.2377	199.9579	0.51	199.9578	0.28	66.46	-0.13	0.20	0.07	0.55	0.63	4.43	0.07	-0.29	-0.30	0.10	0.11	>
ST6	ST4	0.2375	0.2381	199.9578	0.51	199.9578	0.28	66.46	-0.05	0.07	0.02	0.20	0.63	4.43	0.01	-0.10	-0.10	0.01	0.01	>
ST6	8	0.2375	1.6255	360.8031	0.53	360-8031	0.36	50.05	0.06	-0.13	-0.06	0.40	-0.75	-5.32	0.01	-0.14	-0.15	0.03	0.03	>
ST6	U	0.2375	1.6585	226.2368	0.51	226-2367	0.31	60.88	-0.11	0.18	0.07	0.53	0.66	4.65	0.04	-0.24	-0.25	0.07	0.08	>
ST6	ST8	0.2375	0.2417	200.0188	0.51	200.0186	0.39	37.49	-0.22	0.58	0.36	2.18	0.83	5.90	0.18	-0.72	-0.76	0.49	0.53	>
ST8	υ	0.2415	1.6585	224.8260	0.51	224.8256	0.30	61.36	-0.48	0.78	0.30	2.29	0.65	4.63	0.88	-1.46	-1.55	1.43	1.58	>
ST8	۵	0.2415	1.5840	284.4758	0.52	284.4761	0.30	62.46	0.28	-0.45	-0.17	1.29	-0.66	-4.66	0.30	-0.71	-0.75	0.47	0.52	>
ST10	ST8	0.2367	0.2417	200.0067	0.51	200-0062	0.34	50.21	-0.56	1.11	0.55	3.72	0.72	5.10	1.20	-2.11	-2.25	2.40	2.65	>
ST10	U	0.2367	1.6585	360.4932	0.53	360.4922	0.29	67.45	-1.00	1.48	0.48	3.85	0.65	4.58	3.55	-3.83	-4.14	5.26	5.93	>
ST10	۵	0.2367	1.5840	202.3001	0.51	202.2997	0.32	56.50	-0.38	0.68	0.30	2.12	0.68	4.81	0.57	-1.15	-1.22	1.00	1.10	>
٩	8	1.6120	1.6255	268.8177	0.52	268.8174	0.32	58.44	-0.22	0.38	0.16	1.13	0.68	4.80	0.18	-0.55	-0.57	0.31	0.33	>
٩	ST2	1.6120	0.2350	262.0419	0.52	262.0421	0.30	62.55	0.15	-0.24	60.0-	0.68	-0.65	-4.63	0.08	-0.33	-0.35	0.13	0.14	>
٩	ST0	1.6120	0.2348	203.8082	0.51	203 8085	0.32	57.51	0.33	-0.57	-0.24	1.76	-0.67	-4.77	0.41	-0.93	-0-98	0.72	0.79	>
8	U	1.6255	1.6585	400.4907	0.54	400.4908	0.34	57.39	0.16	-0.28	-0.12	0.82	-0.71	-5.04	60.0	-0.37	-0-39	0.16	0.17	>
Ш	ST4	1.6255	0.2381	224,9744	0.51	224.9746	0.31	59.92	0.24	-0.39	-0.16	1.17	-0.66	-4.69	0.21	-0.59	-0-62	0.35	0.38	>
ß	ST2	1.6255	0.2350	225.9334	0.51	225-9339	0.30	62.55	0.48	-0.76	-0.29	2.19	-0.65	-4.59	0.86	-1.43	-1.51	1.38	1.51	>
Ш	ST0	1.6255	0.2348	362.5552	0.53	362-5562	0.28	69.98	0.96	-1.37	-0.41	3.40	-0.64	-4.50	3.24	-3.46	-3.73	4.63	5.19	>
8	A	1.6255	1.6120	268.8173	0.52	268.8174	0.32	58.44	0.15	-0.26	-0.11	0.79	-0.68	-4.80	0.09	-0.36	-0-38	0.15	0.16	>
U	۵	1.6585	1.5840	298.5147	0.52	298.5148	0.32	57.90	0.13	-0.23	-0.10	0.69	-0.69	-4.86	0.07	-0.31	-0.32	0.11	0.12	>
J	ST10	1.6585	0.2369	360.4915	0.53	360.4922	0.29	67.45	0.70	-1.04	-0.34	2.70	-0.65	-4.58	1.74	-2.23	-2.38	2.58	2.86	>
U	ST8	1.6585	0.2417	224.8252	0.51	224.8256	0.30	61.36	0.34	-0.56	-0.22	1.64	-0.65	-4.63	0.45	-0.93	-0-99	0.73	0.80	>
J	ST6	1.6585	0.2377	226.2366	0.51	226.2367	0.31	60.88	0.09	-0.15	-0.06	0.45	-0.66	-4.65	0.03	-0.20	-0.21	0.05	0.06	>
U	ST4	1.6585	0.2381	363.0155	0.53	363.0153	0.30	65.64	-0.27	0.42	0.14	1.11	0.66	4.65	0.27	-0.65	-0-68	0.41	0.44	>
J	B	1.6585	1.6255	400.4911	0.54	400.4908	0.34	57.39	-0.26	0.45	0.19	1.32	0.71	5.04	0.23	-0.64	-0.67	0.40	0.44	>
۵	ST10	1.5840	0.2369	202.2993	0.51	202.2997	0.32	56.50	0.39	-0-69	-0.30	2.17	-0.68	-4.81	0.59	-1.18	-1.25	1.04	1.14	>
۵	ST8	1.5840	0.2417	284.4760	0.52	284.4761	0.30	62.46	0.05	-0.08	-0.03	0.22	-0.66	-4.66	0.01	-0.10	-0.10	0.01	0.02	>
۵	C	1.5840	1.6585	298.5150	0.52	298.5148	0.32	57.90	-0.15	0.26	0.11	0.79	0.69	4.86	0.09	-0.36	-0.37	0.15	0.16	>
								21.62	-1.00	1.48					22.55					>
Observation Gro	oup: Slope_distance_	_Eo (A-priori: σ _ε	$a_1 = 0.50 \text{ mm}, \sigma_c$; = 0.50 ppm)																

 $T \le q \mid H_0$ > > > \mathbf{i} \mathbf{i} T_{post} 2.02 1.47 0.42 1.24 0.05 0.04 1.84 1.34 0.38 1.13 Tprio -0.19 -1.85 -1.48 -0.66 -1.32 log(p_{prio}) log(p_{post}) -0.18 -1.74 -1.40 -0.62 -1.25 0.03 1.58 0.98 0.28 **0.89** 28.49 C -6.03 -5.42 5.87 5.85 -5.68 $\nabla(\lambda)$ in mgon 0.83 -0.85 -0.76 0.83 -0.80 $\nabla(1)$ in mgon 1.07 0.87 1.28 0.32 1.64 EF-SP in mm -0.16 0.76 0.40 -0.68 -0.54 in mm -0.85 -0.18 -1.04 0.96 0.51 1.91 ⊽ in mgon 0.67 0.12 0.89 -0.70 -0.38 -1.34 ٤ in mgon 73.77 78.27 30.00 69.62 86.23 73.35 in % 1.13 1.02 0.82 1.14 1.21 р "_П 89.994749 89.967616 90.034717 90.022157 90.008971 > ° .⊑ 2.30 2.30 2.30 2.30 2.30 a0 in " 89.994639 90.008167 89.968250 90-035056 90.021556 v v v 1.5640 1.5510 0.2353 0.2349 1.5640 th in m 0.2347 0.2347 0.2347 0.2351 0.2351 Zenith Angles: Zenith_angles_E1 i i Target-Id ST2_1 ST0 ш ш ш Station-Id ST2_1 ST2_1 STO STO STO

Zenith Angles: Zenith_angles_Eo

Station-Id	Target-Id	hi m	th in m	v0 ° ui	a0 " i	> °	р "	in %	E in mgon	√ in mgon	EP in mm	EF-SP in mm	∇(1) in mgon	V(λ) in mgon	Ω	g(p _{prio})	log(p _{post})	T _{prio}	T _{post}	T ≤ q H ₀
ST2_1	Ľ	0.2351	1.5510	90.041403	2.30	90.041919	1.03	78.00	0.57	-0.73	-0.53	1.12	-0.80	-5.69	0.65	-1.02	-1.08	0.84	0.91	>
ST2_1	ST4_1	0.2351	0.2356	89.948528	2.30	89.947561	1.19	70.47	-1.07	1.52	1.34	2.75	0.85	5.99	2.29	-2.64	-2.83	3.25	3.61	>
ST4_1	ST2_1	0.2354	0.2353	90.055222	2.30	90.054772	1.18	71.12	-0.50	0.70	0.61	1.26	0.84	5.96	0.50	-0.91	-0-96	0.70	0.76	>
ST4_1	ш	0.2354	1.5510	90,089097	2.30	90.089744	1.08	75.71	0.72	-0.95	-0.76	1.53	-0.82	-5.78	1.02	-1.41	-1.49	1.35	1.49	>
ST4_1	G	0.2354	1.6050	89.921667	2.30	89.921468	0.88	83.97	-0.22	0.26	0.18	0:30	0.77	5.49	0.10	-0.31	-0.32	0.12	0.13	>
ST4_1	ST6_1	0.2354	0.2372	89.953125	2.30	89.952454	1.38	60.48	-0.75	1.23	1.50	2.59	0.91	6.47	1.10	-1.73	-1.84	1.82	2.01	>
ST6_1	ш	0.2370	1.5510	90.084431	2.30	90.084303	0.92	82.59	-0.14	0.17	0.12	0.21	0.78	5.53	0.04	-0.19	-0.20	0.05	0.05	>
ST6_1	9	0.2370	1.6050	89.914708	2.30	89.914864	1.10	74.92	0.17	-0.23	-0.19	0.38	-0.82	-5.81	0.06	-0.25	-0.26	0.08	0.09	>
ST6_1	ST8_1	0.2370	0.2411	89.951736	2.30	89.950526	1.20	70.35	-1.34	1.91	1.69	3.46	0.85	6.00	3.59	-3.73	-4.04	5.10	5.75	>
ST8_1	ST6_1	0.2409	0.2372	90.052833	2.30	90.051807	1.18	71.00	-1.14	1.61	1.40	2.87	0.84	5.97	2.58	-2.87	-3.08	3.63	4.05	>
ST8_1	9	0.2409	1.6050	89.959486	2.30	89.959367	1.05	77.22	-0.13	0.17	0.13	0.27	0.81	5.72	0.03	-0.18	-0.19	0.05	0.05	>
ST8_1	н	0.2409	1.5615	89-909306	2.30	89.909666	1.01	79.00	0.40	-0.51	-0.41	0.74	-0.80	-5.66	0.32	-0.64	-0.68	0.40	0.44	>
ST8_1	ST10	0.2409	0.2364	89.948278	2.30	89.947433	1.14	73.02	-0.94	1.29	1.03	2.21	0.83	5.88	1.75	-2.11	-2.25	2.40	2.65	>
ST10	ST8_1	0.2362	0.2411	90.055792	2.30	90.054900	1.13	73.45	66.0-	1.35	1.07	2.30	0.83	5.87	1.95	-2.27	-2.43	2.65	2.94	>
ST10	9	0.2362	1.6050	90.005236	2.30	90.005818	0.81	86.29	0.65	-0.75	-0.39	0.78	-0.76	-5.41	0.83	-1.12	-1.18	0.96	1.05	>
ST10	т	0.2362	1.5615	89.924708	2.30	89.924876	1.24	68.24	0.19	-0.27	-0.26	0.51	-0.86	-6.09	0.07	-0.29	-0.30	0.10	0.11	>
ш	L	1.5640	1.5510	90.015972	2.30	90.015678	1.04	77.52	-0.33	0.42	0.36	0.64	0.81	5.71	0.21	-0.51	-0.53	0.27	0.30	>
Ш	ST2_1	1.5640	0.2353	89.980694	2.30	89.981006	1.03	78.04	0.35	-0.44	-0.36	0.67	-0.80	-5.69	0.24	-0.54	-0.57	0.30	0.33	>
ш	ST0	1.5640	0.2349	90.007278	2.30	90.007689	1.21	69.82	0.46	-0.65	-0.60	1.19	-0.85	-6.02	0.41	-0.82	-0.86	0.59	0.65	>
ш	9	1.5510	1.6050	89.879208	2.30	89.879616	0.85	85.10	0.45	-0.53	-0.32	0.56	-0.77	-5.45	0.41	-0.71	-0.75	0.48	0.52	>
ш	ST6_1	1.5510	0.2372	89.919917	2.30	89.920080	0.88	83.96	0.18	-0.22	-0.15	0.25	-0.77	-5.49	0.07	-0.25	-0.26	0.08	0.08	>
ш	ST4_1	1.5510	0.2356	89.912764	2.30	89.912958	1.10	74.94	0.22	-0.29	-0.24	0.47	-0.82	-5.81	60.0	-0.32	-0.34	0.12	0.13	>
ш	ST2_1	1.5510	0.2353	89.960278	2.30	89,960795	1.03	77.87	0.57	-0.74	-0.53	1.13	-0.80	-5.70	0.66	-1.02	-1.08	0.84	0.92	>
ш	ST0	1.5510	0.2349	89.995708	2.30	89.995434	0.81	86.52	-0.30	0.35	0.18	0.36	0.76	5.41	0.18	-0.44	-0.46	0.21	0.23	>
Ľ	ш	1.5510	1.5640	89.987806	2.30	89.987612	1.04	77.62	-0.22	0.28	0.23	0.42	0.81	5.71	60-0	-0.31	-0.33	0.12	0.13	>
U	Ŧ	1.6050	1.5615	89.945764	2.30	89.945722	1.01	79.00	-0.05	0.06	0.05	0.08	0.80	5.66	0.00	-0.06	-0.06	0.01	0.01	>
IJ	ST10	1.6050	0.2364	89.997931	2.30	89.998562	0.82	85.99	0.70	-0.82	-0.44	0.86	-0.77	-5.42	0.98	-1.25	-1.32	1.13	1.24	>
IJ	ST8_1	1.6050	0.2411	90.043292	2.30	90.043334	1.05	77.35	0.05	-0.06	-0.04	0.09	-0.81	-5.72	0.00	-0.06	-0.06	0.01	0.01	>
IJ	ST6_1	1.6050	0.2372	90.087319	2.30	90.087854	1.08	75.70	0.59	-0.79	-0.63	1.27	-0.82	-5.78	0.70	-1.09	-1.15	0.93	1.01	>
IJ	ST4_1	1.6050	0.2356	90.082708	2.30	90.082942	0.92	82.60	0.26	-0.32	-0.23	0.39	-0.78	-5.53	0.13	-0.38	-0-39	0.16	0.18	>
IJ	L	1.6050	1.5510	90.126403	2.30	90.125285	0.87	84.51	-1.24	1.47	0.91	1.58	0.77	5.47	3.06	-2.86	-3.08	3.62	4.04	>
т	ST10	1.5615	0.2364	90.077444	2.30	90.077543	1.24	68.06	0.11	-0.16	-0.16	0.30	-0.86	-6.10	0.02	-0.16	-0.17	0.04	0.04	>
т	ST8_1	1.5615	0.2411	90.093292	2.30	90.093775	1.00	79.25	0.54	-0.68	-0.55	0.98	-0.80	-5.65	0.57	-0.93	-0-98	0.72	0.79	>
н	U	1.5615	1.6050	90.058000	2.30	90.057931	1.00	79.12	-0.08	0.10	0.08	0.14	0.80	5.65	0.01	-0.10	-0.11	0.01	0.02	>
Observation Grou	ıp: Zenith_angles_F	31 (A-priori: $\sigma_{\rm a}$	= 2.30 ")						+ C - T	TCIT					C+=07					>

Station-Id	Target-Id	h n m	th in m	v O in °	or0 "	> <u>ci</u>	р " "	r in %	E in mgon	√ in mgon	in mg	F-SP	∇(1) n mgon	V(λ) in mgon	5	og(p _{prio})	log(p _{post})	Tprio	T _{post}	T ≤ q H ₀
ST0	٩	0.2346	1.6120	89.981694	4.00	89.982079	2.15	68.36	0.43	-0.63	-0.61	0.67	-1.49	-10.58	0.12	-0-39	-0.41	0.18	0.19	7
ST0	8	0.2346	1.6255	89,998722	4.00	89,998759	1.46	85.48	0.04	-0.05	-0.03	0.03	-1.34	-9.46	00.00	-0-03	-0.03	00"0	0.00	>
ST0	ST2	0.2346	0.2350	89.968611	4.00	89-967663	2.24	65.80	-1.05	1.60	1.67	1.79	1.52	10.78	0.73	-1.23	-1.30	1.11	1.21	>
ST2	A	0.2348	1.6120	90.011153	4.00	90.012568	1.87	76.16	1.57	-2.06	-1.80	1.87	-1.41	-10.02	1.62	-1.93	-2.06	2.13	2.35	7
ST2	8	0.2348	1.6255	90.025208	4.00	90.025280	1.86	76.33	0.08	-0.10	-0.08	0.10	-1.41	-10.01	00.0	-0-06	-0-06	0.01	0.01	7
ST2	ST4	0.2348	0.2381	89.948431	4.00	89.946288	2.10	69.97	-2.38	3.40	3.04	3.56	1.48	10.45	3.72	-3.86	-4.17	5.32	6.00	7
ST4	ST2	0.2379	0.2350	90.057750	4.00	90.056515	2.06	70.93	-1.37	1.93	1.70	1.99	1.47	10.38	1.24	-1.68	-1.78	1.74	1.92	>
ST4	8	0.2379	1.6255	90.073472	4.00	90.074371	1.86	76.39	1.00	-1.31	-1.01	1.20	-1.41	-10.01	0.65	-1.04	-1.10	0.86	0.94	>
ST4	c	0.2379	1.6585	89.914056	4.00	89.913785	1.54	83.85	-0.30	0.36	0.23	0.24	1.35	9.55	0.06	-0-24	-0.25	0.07	0.08	>
ST4	ST6	0.2379	0.2377	89.954694	4.00	89.952590	2.12	69.37	-2.34	3.37	3.07	3.56	1.48	10.50	3.59	-3.77	-4.08	5.17	5.83	>
ST6	ST4	0.2375	0.2381	90.050694	4.00	90.050213	2.09	70.14	-0.53	0.76	0.69	0.80	1.47	10.44	0.19	-0-50	-0.53	0.27	0.29	>
ST6	8	0.2375	1.6255	90.075056	4.00	90.075033	1.50	84.69	-0.03	0.03	0.02	0.02	1.34	9.50	00'0	-0.02	-0.02	0.00	0.00	7
ST6	C	0.2375	1.6585	89.901806	4.00	89.902205	1.86	76.29	0.44	-0.58	-0.45	0.53	-1.41	-10.01	0.13	-0-38	-0.40	0.17	0.18	>
ST6	ST8	0.2375	0.2417	89.953583	4.00	89.951957	2.10	69.80	-1.81	2.59	2.32	2.72	1.48	10.47	2.14	-2.53	-2.71	3.07	3.41	>
ST8	ST6	0.2415	0.2377	90.051375	4.00	90.050846	2.07	70.77	-0.59	0.83	0.73	0.86	1.47	10.40	0.23	-0-56	-0.59	0.32	0.35	>
ST8	C	0.2415	1.6585	89.945028	4.00	89.945559	1.85	76.50	0.59	-0.77	-0.60	0.70	-1.41	-10.00	0.23	-0-54	-0.56	0.30	0.33	>
ST8	٥	0.2415	1.5840	89.904431	4.00	89.905339	1.79	78.00	1.01	-1.29	-1.12	1.11	-1.40	-9.90	0.67	-1.04	-1.10	0.86	0.94	7
ST8	ST10	0.2415	0.2369	89.949361	4.00	89.948096	2.25	65.27	-1.41	2.15	2.28	2.43	1.53	10.82	1.30	-1.84	-1.96	1.99	2.19	7
ST10	C	0.2367	1.6585	89.996625	4.00	89.997228	1.49	84.75	0.67	-0.79	-0.47	0.51	-1.34	-9.50	0.29	-0-59	-0.62	0.35	0.38	7
ST10	۵	0.2367	1.5840	89.917361	4.00	89.918146	2.21	66.52	0.87	-1.31	-1.33	1.45	-1.51	-10.72	0.50	-0-95	-1.00	0.75	0.82	7
A	8	1.6120	1.6255	90.011333	4.00	90.011434	1.82	77.29	0.11	-0.15	-0.12	0.13	-1.40	-9.95	0.01	-0.09	-0.09	0.01	0.01	7
A	ST2	1.6120	0.2350	89.991111	4.00	89.991210	1.83	77.00	0.11	-0.14	-0.12	0.13	-1.41	-9.97	0.01	-0.08	-00"00	0.01	0.01	>
A	ST0	1.6120	0.2348	90.020389	4.00	90.020837	2.17	67.87	0.50	-0.73	-0.72	0.80	-1.50	-10.62	0.16	-0.47	-0.49	0.24	0.26	7
8	U	1.6255	1.6585	89.882167	4.00	89.881518	1.52	84.18	-0.72	0.86	0.54	0.54	1.35	9.53	0.34	-0.65	-0.68	0.41	0.44	7
8	ST6	1.6255	0.2377	89.929500	4.00	89.930198	1.54	83.84	0.78	-0.93	-0.60	0.62	-1.35	-9.55	0.39	-0.71	-0.75	0.47	0.51	7
B	ST4	1.6255	0.2381	89.929028	4.00	89.928860	1.86	76.31	-0.19	0.25	0.19	0.22	1.41	10.01	0.02	-0.15	-0.15	0.03	0.03	>
8	ST2	1.6255	0.2350	89.976708	4.00	89.977965	1.83	77.20	1.40	-1.81	-1.36	1.62	-1.41	-9.95	1.28	-1.62	-1.72	1.66	1.82	>
8	ST0	1.6255	0.2348	90.006236	4.00	90.006498	1.48	85.02	0.29	-0.34	-0.20	0.22	-1.34	-9.48	0.06	-0.23	-0.24	0.07	0.07	>
8	۲	1.6255	1.6120	89.993653	4.00	89.992487	1.82	77.33	-1.30	1.68	1.43	1.47	1.40	9.95	1.10	-1.46	-1.55	1.42	1.56	>
U	٥	1.6585	1.5840	89.951958	4.00	89.95228	1.76	78.77	0.30	-0.38	-0.32	0.32	-1.39	-9.85	0.06	-0.24	-0.25	0.08	0.08	7
U	ST10	1.6585	0.2369	90.007250	4.00	90-007998	1.47	85.22	0.83	-0.98	-0.57	0.61	-1.34	-9.47	0.45	-0.76	-0.80	0.53	0.58	>
c	ST8	1.6585	0.2417	90.057681	4.00	90.057669	1.89	75.61	-0.01	0.02	0.01	0.02	1.42	10.06	00.00	-0.01	-0.01	00"0	0.00	7
U	ST6	1.6585	0.2377	90.100500	4.00	90.101045	1.86	76.37	0.61	-0.79	-0.62	0.72	-1.41	-10.01	0.24	-0-55	-0.58	0.31	0.34	7
U	ST4	1.6585	0.2381	90.091319	4.00	90.091478	1.50	84.69	0.18	-0.21	-0.13	0.13	-1.34	-9.50	0.02	-0.13	-0.14	0.02	0.03	>
U	8	1.6585	1.6255	90.125611	4.00	90.124324	1.48	85.11	-1.43	1.68	1.01	1.00	1.34	9.48	1.34	-1.56	-1.66	1.58	1.73	>
٥	ST10	1.5840	0.2369	90.083917	4.00	90.084748	2.20	66.98	0.92	-1.38	-1.39	1.52	-1.51	-10.69	0.56	-1.02	-1.08	0.83	0.91	>
٥	ST8	1.5840	0.2417	90.097417	4.00	90.098770	1.83	77.10	1.50	-1.95	-1.73	1.71	-1.41	-9.96	1.48	-1.80	-1.91	1.92	2.12	>
D	U	1.5840	1.6585	90.052403	4.00	90.052126	1.76	78.76	-0.31	0.39	0.33	0.33	1.39	9.85	0.06	-0.25	-0.26	0.08	0.09	> `
Observation Gro	up: Zenith_angles_}	Eo (A-priori: σ _a	= 4.00 ")					1	200	2					000					>

Unknown Group Parameter

Observation Group	Parameter Type	Value	b	IJ	$T \le q \mid H_0$
Directions_set_E1 (ST0)	Orientation	21.351848 °	0.82 "	5.13 "	×
Directions_set_E1 (ST2)	Orientation	299.590456 °	0.71 "	4.42 "	×
Directions_set_E1 (ST4)	Orientation	79.622105 °	0.80 "	5.01 "	×
Directions_set_E1 (ST6)	Orientation	128.686805 °	<i>"</i> 69°0	4.34 "	×
Directions_set_E1 (ST8)	Orientation	73.900061 °	0.71 "	4.41 "	×
Directions_set_E1 (ST10)	Orientation	53.459914 °	0.82 "	5.12 "	×
Directions_set_E1 (A)	Orientation	8.986340 °	0.82 "	5.14 "	×
Directions_set_E1 (B)	Orientation	129.368560 °	0.57 "	3.55 "	×
Directions_set_E1 (C)	Orientation	225.692315 °	0.57 "	3.55 "	×
Directions_set_E1 (D)	Orientation	38.156990 °	0.82 "	5.15 "	×
Directions_set_E0 (ST0)	Orientation	8.347014 °	, 06"0	5.62 "	×
Directions_set_E0 (ST2)	Orientation	89.924233 °	0.77 "	4.82 "	×
Directions_set_E0 (ST4)	Orientation	83.696102 °	0.76 "	4.73 "	×
Directions_set_E0 (ST6)	Orientation	89.900071 °	0.76 "	4.72 "	×
Directions_set_E0 (ST8)	Orientation	89.862646 °	0.77 "	4.82 "	×
Directions_set_E0 (ST10)	Orientation	89.868560 °	<i>"</i> 06 ⁻ 0	5.59 "	×
Directions_set_E0 (A)	Orientation	269.697498 °	<i>"</i> 06"0	5.63 "	×
Directions_set_E0 (B)	Orientation	263.461748 °	0.62 "	3.84 ″	×
Directions_set_E0 (C)	Orientation	269.885643 °	0.62 "	3.85 "	×
Directions_set_E0 (D)	Orientation	359.806392。	<i>"</i> 06"0	5.63 "	×
Zenith_angles_E1	Refraction	-0.36	0.08	0.50	>
Zenith_angles_E0	Refraction	-0.62	0.14	0.87	7

Additional Unknown Parameter

Reliability of terrestrial observations

Observation Group	Observation Type	e Station-I	d Target-I	d ^r min in %	r _{avg} in %	
Directions_set_E1 (ST4)	Directions	ST4_1	ш	62.57	71.25	
Slope_distance_E0	Slope Distance	s ST6	ST8	37.49	61.46	
Zenith_angles_E1	Zenith Angles	ST4_1	ST6_1	60.48	76.62	
Summary of redundancy r						
Observation Group	Observation Type	Station-Id	Target-Id	log(p _{prio,r}	nin) lo	g(pprio,avg)

Directions_set_E1 (B) Directions

-1.02

-4.03

ш

-0.96 -0.84

-3.83 -3.86 ST4 C ST10 ST2 Slope Distances Zenith Angles Slope_distance_E0 Zenith_angles_E0

Summary of (a-priori) probability value p

Observation Type Station-Id Target-Id EPmax EPavg in mm in mm Observation Group

Observation Group	Observation Type	Station-Id	Target-Id	EP _{max} in mm	EP _{avg} in mm
Directions_set_E0 (ST6)	Directions	ST6	ST4	0.33	0.06
Slope_distance_E0	Slope Distances	ST2	ST4	0.88	0.17
Zenith_angles_E0	Zenith Angles	ST4	ST6	3.07	0.71

Summary of influence on point position due to an undetected gross-error EP

Distribution of influence on point position due to an undetected gross-error EP (Mean interval: $\{EP \mid 1.00 \text{ mm} \le EP \le 5.00 \text{ mm}\}$)

Slope Distances

Distribution of (a-priori) probability value p-value (Mean interval: {p-value $| 1.00 \% \le p$ -value $\le 5.00 \%$ })

Distribution of influence on point position due to an undetected gross-error EP (Mean interval: {EP | 1.00 mm \le EP \le 5.00 mm})

Distribution of redundancy r (Mean interval: {r | 30.00 % \leq r \leq 70.00 %})

Java-Applied-Geodesy-3D — © Michael Lösler — <u>software.applied-geodesy.org</u> ...: Least-Squares Adjustment Software for Geodetic Sciences ::..