SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET

Niko Radonić

UPOTREBA RAZLIČITIH GEOKEMIJSKIH FAKTORA S CILJEM RAZLIKOVANJA GEOGENIH OD ANTROPOGENIH IZVORA POTENCIJALNO TOKSIČNIH ELEMENATA U TLU PODRAVINE

Zagreb, 2023.

Ovaj rad izrađen je u Zavodu za mineralogiju, petrologiju i mineralne sirovine pod vodstvom mentora izv. prof. dr. sc. Stanka Ružičića i komentora dr. sc. Tomislava Brenka te je predan na natječaj za dodjelu Rektorove nagrade u akademskoj godini 2022./2023.

Sadržaj

1.	UV	OD	1
2.	CIL	JEVI I HIPOTEZA RADA	2
3.	PO	FENCIJALNO TOKSIČNI ELEMENTI	3
3	3.1	Bakar (Cu)	3
3	3.2	Cink (Zn)	3
3	3.3	Kadmij (Cd)	4
3	3.4	Krom (Cr)	4
3	3.5	Nikal (Ni)	5
3	3.6	Olovo (Pb)	5
4.	GE	OGRAFSKE I KLIMATSKE KARAKTERISTIKE ISTRAŽIVANOG PODI	RUČJA 7
4	4.1	Geografske karakteristike	7
4	4.2	Klimatske karakteristike	8
5.	GE	OLOGIJA I PEDOLOGIJA ISTRAŽIVANOG PODRUČJA	9
5	5.1	Geologija	9
5	5.2	Pedologija	10
6.	MA	TERIJALI I METODE ISTRAŽIVANJA	11
6	5.1	Uzorkovanje i priprema uzoraka	11
6	5.2	Rendgenska fluorescencijska spektroskopija	11
	6.2.	1 Princip rada	12
6	5.3 (TIC)	Određivanje ukupnog sadržaja ugljika (TC) i sadržaja ugljika iz organskil	h spojeva 12
	6.3.	1 Princip rada	13
6	5.4	Faktor obogaćenja	16
6	5.5	Indeks geoakumulacije	17
6	5.6	Faktor onečišćenja	18
6	5.7	Prostorna distribucija i statistička analiza teških metala u tlu	18
7.	REZ	ZULTATI	20
7	7.1	Rezultati geokemijske analize	20
7	7.2	Ukupni sadržaja ugljika (TC) i sadržaj ugljika iz organskih spojeva (TIC)	22
7	7.3	Faktor obogaćenja (EF)	23
7	7.4	Indeks geoakumulacije (Igeo)	23
7	7.5	Faktor onečišćenja (CF)	23
7	7.6	Statističke analize	24
7	7.7	Prostorna distribucija teških metala	26
8.	RA	SPRAVA	34
9	ZA	KLJUČAK	

10.	ZAHVALE	40
11.	LITERATURA	41
12.	PRILOZI	46

Popis slika:

Slika 1. Lokacija istraživanja (Kalinovac) sa ucrtanim područjem i mrežom uzorkovanja7
Slika 2. Izvođenje mjerenja instrumentom za rendgensku fluorescencijsku analizu (pXRF)
Hitachi XMET 8000 Expert Geo11
Slika 3. Shematski prikaz pobude atoma željeza na emisiju fluorescentnog Fe Ka zračenja
(Preuzeto iz Tibljaš, 2005)12
Slika 4. Uređaj Multi EA 4000 CS za istovremeno ili pojedinačno određivanje ukupnog ugljika
u čvrstim uzorcima13
Slika 5. Vaganje i priprema uzoraka za određivanje ukupnog sadržaja ugljika14
Slika 6. Uzorak nakon spaljivanja na 1200°C15
Slika 7. Dijagram hijerarhijske klaster analize promatranih parametara tla25
Slika 8. Analiza glavnih komponenti tla na području istraživanja. a) krivulja svojstvenih
vrijednosti (eng. scree plot of total factor variances), b) utjecaj (težina) pojedinih faktora i c)
projekcija glavnih komponenti PC1 i PC226
Slika 9. Prostorna distribucija a) kadmija (mg/kg), b) faktora obogaćenja kadmija, c) faktora
onečišćenja kadmija i d) indeksa geoakomulacija kadmija na području istraživanja28
Slika 10. Prostorna distribucija a) kroma (mg/kg), b) faktora obogaćenja kroma, c) faktora
onečišćenja kroma i d) indeksa geoakomulacija kroma na području istraživanja
Slika 11. Prostorna distribucija a) bakra (mg/kg), b) faktora obogaćenja bakra, c) faktora
onečišćenja bakra i d) indeksa geoakomulacija bakra na području istraživanja
Slika 12. Prostorna distribucija a) nikla (mg/kg), b) faktora obogaćenja nikla, c) faktora
onečišćenja nikla i d) indeksa geoakomulacija nikla na području istraživanja
Slika 13. Prostorna distribucija a) olova (mg/kg), b) faktora obogaćenja olova, c) faktora
onečišćenja olova i d) indeksa geoakomulacija olova na području istraživanja32
Slika 14. Prostorna distribucija a) cinka (mg/kg), b) faktora obogaćenja cinka, c) faktora
onečišćenja cinka i d) indeksa geoakomulacija cinka na području istraživanja
Slika 15. Hijerarhijska klaster analiza teških metala i željeza
Slika 16. Analiza glavnih komponenti teških metala i željeza u svrhu razlikovanja antropogenih
i geogenih metala

Popis tablica:

Tablica 1. Kategorije obogaćenja na temelju Faktora obogaćenja (Loska i Wiechula, 2003). 17
Tablica 2. Kategorije tla na temelju indeksa geoakumulacije (Igeo)
Tablica 3. Kategorije tla prema faktoru onečišćenja18
Tablica 4. Koncentracije pojedinih elemenata dobivene geokemijskom analizom. Deblje
označene vrijednosti predstavljaju vrijednosti iznad dopuštenih MDK vrijednosti kod pH <5, a
crveno označene vrijednosti predstavljaju vrijednosti iznad MDK kod pH 5-6. N/A - nije
analizirano21
Tablica 5. MDK vrijednosti prema Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja
NN 71/2019
Tablica 6. Korelacijska matrica promatranih teških metala i drugih značajnih parametara tla na
području istraživanja. Crveno označeni uzorci pokazuju statistički pouzdane vrijednosti
(p<0,05), dok podebljane vrijednosti pokazuju izraženiju korelaciju

Popis priloga:

Prilog 1. Fizikalno-kemijski parametri tla	46
Prilog 2. Faktora obogaćenja i kategorija stanja tla za Cr, Ni, Cu, Zn, Cd i Pb	47
Prilog 3. Indeks geoakumulacije i kategorija stanja tla za Cr, Ni, Cu, Zn, Cd i Pb	49
Prilog 4. Faktora onečišćenja i kategorija stanja tla za Cr, Ni, Cu, Zn, Cd i Pb	52

1. UVOD

U današnje vrijeme, sve bržim napretkom tehnologije i društva sve više se onečišćuju sastavnice okoliša, tlo i podzemna voda. Istovremeno se spoznaje koliko je okoliš ugrožen i povećava se svijest o potencijalnim problemima koje pojedine toksične tvari mogu izazvati unosom u okoliš kao posljedica ljudske aktivnosti ili prirodnog podrijetla. Potencijalno toksični elementi (PTE) jedni su od tvari koje mogu potencijalno ugroziti tlo. PTE mogu doći u okoliš prirodnim putem kao izvorni materijal ili antropogeno iz različitih izvora (Ružičić i dr., 2022). Predmet istraživanja ovog rada su udjeli PTE u tlima na području lokaliteta Kalinovac (Podravina). Prijašnjim istraživanjima tla na području Podravine određene su povećane koncentracije navedenih elemenata. Halamić i Miko (2009) smatraju da su povećane koncentracije Cd, Pb i Zn u Podravini posljedica dreniranja rijeke Drave područja prirodno bogatih cinkom i dugogodišnje rudarske aktivnosti u Republici Sloveniji (rudnik Mežica) i Republici Austriji (rudnik Bleiberg).

U okviru ovog rada provedena je geokemijska analiza tla na području lokaliteta Kalinovac (Podravina) kako bi se procijenila distribucija potencijalno toksičnih elemenata Cd, Cr, Pb, Cu, Zn i Ni u tlu te kako bi se pokušao utvrditi njihov geogeni ili antropogeni izvor u okolišu te njihova međusobna korelacija u tlu.

Tlo je uzorkovano sa površine pod stalnim utjecajem poljoprivredne aktivnosti na kojoj se uzgaja kukuruz. U sklopu laboratorijskih istraživanja na uzorcima tla provedena je rendgenska fluorescencijska spektroskopija (XRF analiza) te određivanje ukupnog sadržaja ugljika (TC) i sadržaja ugljika iz organskih spojeva (TIC). Koncentracije dobivene XRF analizom uspoređene su s maksimalnim dopuštenim koncentracijama u tlu prema Pravilniku o zaštiti poljoprivrednog zemljišta od onečišćenja (NN 71/2019). Pomoću dobivenih koncentracija su izračunati: faktor obogaćenja (EF), faktor onečišćenja (CF) i indeks geoakumulacije (Igeo). Provedena je i statistička obrada podataka te međusobna korelacija pojavljivanja pojedinih elemenata upotrebom programa Statistica 13.5. Osim navedenih metoda, pomoću GIS alata kreirane su karte prostorne distribucije koncentracije analiziranih PTE-a, faktora obogaćenja (EF), faktora onečišćenja (CF) i indeksa geoakumulacije (Igeo).

2. CILJEVI I HIPOTEZA RADA

Ciljevi rada su:

- a) Odrediti koncentracije i distribucije PTE u tlu.
- b) Razlikovati antropogeni od geogenog izvora PTE.
- c) Utvrditi korelaciju između analiziranih PTE u tlu.

Hipoteze rada:

a) Poljoprivredne površine pod utjecajem antropogene aktivnosti mogu postati onečišćene pojedinim potencijalno toksičnim elementima.

b) Korištenjem geokemijskih, statističkih i prostornih analiza moguće je razlučiti antropogene od geogenih izvora potencijalno toksičnih metala.

3. POTENCIJALNO TOKSIČNI ELEMENTI

U svrhu izrade ovog rada na uzorcima tla mjerene su koncentracije bakra, cinka, kadmija, kroma, nikla i olova. Svaki od ovih elemenata je potencijalno toksičan za ljude. Toksičnost pojedinog elementa ponajviše ovisi o njegovoj biodostupnosti i koncentraciji. Biodostupnost ovisi o biološkim parametrima i fizikalno-kemijskim svojstvima metala, njihovih iona i njihovih spojeva (Duffus, 2002). Kao glavni izvor informacija za izradu ovog poglavlja korišten je Geokemijski atlas Republike Hrvatske (Halamić i Miko, 2009)..

3.1 Bakar (Cu)

Bakar je halkofilni element u tragovima i esencijalni element za biljke, ljude i životinje. Rudni minerali bakra su pretežno sulfidi poput halkozina (Cu₂S), halkopirita (CuFeS₂) i bornita (Cu₅FeS₄). Prema Halamić i Miko (2009) sulfidi se lako troše u kiselim uvjetima (pH<5), a nakon izdvajanja bakar je umjereno mobilan. Mobilnost bakra općenito ovisi o prisutnosti huminske kiseline, organskih liganada, minerala glina i topivih karbonata dok mobilnost u tlu ponajviše ovisi o koncentraciji organskog ugljika i pH. Bakar je često u rudama asociran sa željezom, cinkom, molibdenom, niklom, kobaltom, zlatom i srebrom. Pojava prevelike koncentracije molibdena u tlu izazvati će nedostatak bakra, a pojava prevelike koncentracije bakra izazvati će nedostatak cinka i obratno. Najčešći unos bakra u okoliš je procesima taljenja, otpadom, industrijskom prašinom i upotrebom raznih kemikalija kao što su fungicidi u poljoprivredi. Količina koja je dnevno potrebna čovjeku iznosi između 0,5-6 mg, a u odrasloj osobi prosječne težine (70kg) ukupna masa ovog 72 elementa iznosi u prosjeku mg (url: http://www.pse.pbf.hr/hrvatski/elementi/cu/spojevi.html).

Koncentracije bakra u tlima Podravine kreću se od 5 mg/kg do 239 mg/kg s medijanom od 21 mg/kg. Povećane koncentracije ovog elementa najvećim dijelom su posljedica antropogenog unosa kroz poljoprivredu, ponajviše vinogradarstva, u kojem je učestalo korištenje modre galice (CuSo₄ x 5H₂O).

3.2 Cink (Zn)

Cink pripada oksihalkofilnim elementima u tragovima i spada u skupinu prijelaznih elemenata. Esencijalan je element u tragovima za sva živa bića, a prisutan je u metalnim enzimima i proteinima. Njegova toksičnost je relativno mala. Postoji velik broj rudnih minerala cinka (više od 80), a najčešći su sfalerit (α -ZnS) i vurtzit (β -ZnS). Mobilnost cinka je najveća pri malim vrijednostima pH (ph<4,5) (Halamić i Miko, 2009). Antropogeni unos

cinka u okoliš najčešći je kroz pigmente boja, pocinčano željezo, baterije, otpadne vode, topionice i stara haldišta na obalama rijeka.

U usporedbi s ostatkom Hrvatske u Podravini su izmjerene najveće koncentracije ovog metala u tlu. Raspon izmjerenih koncentracija je od 34 mg/kg do 1432 mg/kg s vrijednošću medijana od 74 mg/kg. S obzirom da je vrijednost medijana za Hrvatsku 84 mg/kg, uočena je neravnomjerna raspodjela cinka u tlima Podravine. Najveće koncentracije su registrirane u tlima smještenim povrh aluvijalnih sedimenata rijeka Drave, Mure i Dunava. Izrazito velike vrijednosti izmjerene su u dolini rijeke Drave. Smatra se da su povećane koncentracije posljedica dreniranja rijeke Drave kroz područja prirodno bogatih cinkom i dugogodišnje rudarske aktivnosti u Republici Sloveniji (rudnik Mežica) i Republici Austriji (rudnik Bleiberg) (Halamić i Miko, 2009).

3.3 Kadmij (Cd)

Kadmij je rijedak halkofilni element u tragovima. Po karakteristikama je vrlo sličan cinku te se ponajviše javlja kao primjesa u cinkovim rudama te se u njima pojavljuje kao sulfid ili karbonat. Kadmij nije biogeni element, a esencijalan je samo za neke životinje. Otrovan je za ljude i životinje, a akumulira se u pšenici, celeru i mrkvi. Njegova mobilnost je vrlo mala i ponajviše ovisi o pH okoliša. Rezistentan je na utjecaje atmosferilija. Najčešće se upotrebljava za lako topive legure, akumulatore, boje, u zaštitnim sredstvima od korozije, za izradu Westonovih elemenata i kao materijal za reaktore. Antropogeni izvori iz kojih najčešće dospijeva u okoliš su otpad, razgradnja boja i zaštitnih sredstava (Halamić i Miko, 2009).

U Podravini raspon izmjerenih koncentracija kadmija kreće se od 0,2 mg/kg do 7,1 mg/kg s medijanom od 0,2 mg/kg. Anomalno visoke koncentracije izmjerene su u tlima na poplavnim sedimentima Drave i dijelom Mure. Smatra se da je uzrok povećanih koncentracija isti kao i kod povećanih koncentracija cinka, a to je dugogodišnja rudarska aktivnost na području Republike Slovenije i Republike Austrije (Halamić i Miko, 2009).

3.4 Krom (Cr)

Krom je litofilan element u tragovima. Njegov najvažniji rudni mineral je kromit (FeCr₂O₄) koji se najčešće eksploatira iz stratiformnih rudnih ležišta Bushveld tipa. Mobilnost kroma je mala jer je najveći dio sadržan u mineralima koji nisu podložni trošenju (kromit, magnetit, ilmenit). Prema Halamić i Miko (2009) dio kroma koji se oslobodi trošenjem fiksira se u mineralima glina ili se koprecipitira sa željezovim i/ili manganovim oksihidroksidima.

Prisutan je u biljnoj, životinjskoj i ljudskoj prehrani u mikrogramskim količinama te ne pripada esencijalnim biogenim elementima. Toksičnost kroma ovisi o valentnom stanju; Cr^{3+} je relativno neopasan dok je Cr^{2+} vrlo otrovan. Upotrebljava se kao oplemenjivač čelika, za izradu pigmenata, kemikalija i visokotemperaturnih materijala. Najčešće ispuštanje kroma u okoliš događa se preko industrijskih otpadnih voda, procesima izgaranja i kao nusprodukt metalne industrije.

Koncentracije kroma u tlima Podravine kreću se od 37 mg/kg do 209 mg/kg, a medijan iznosi 75 mg/kg, što je manje s obzirom na prosječni medijan u Republici Hrvatskoj koji iznosi 88 mg/kg. Prema Halamić i Miko (2009) povećane koncentracije kroma pokazuju samo tla u uskom pojasu uz Dravu razvijena na poplavnim sedimentima. Krom je sadržan u teškoj mineralnoj frakciji tih sedimenata što se posljedično odražava na koncentracije u tlu.

3.5 Nikal (Ni)

Nikal je prijelazni element, pripada 10. skupini periodnog sustava. Nikal pripada feromagnetnim elementima, a u prirodi se najčešće javlja u formi oksida, sulfida i arsenida (Genchi i dr., 2020). Njegovi najvažniji rudni minerali su pentlandit ((Fe,Ni)₉S₈), nikelin (NiAs) i gersdorfit (NiAsS). Mobilnost nikla je relativno mala zbog jake tendencije adsorpcije na minerale glina i Fe-Mn oksihidrokside. Uz smanjenje pH nikal postaje mobilniji. Ni-komponente su relativno topive pri pH<6,5 dok su pri pH>6,7 netopive (Halamić i Miko, 2009).

Nikal nije biogeni element, ali je esencijalan za rast biljaka u određenim koncentracijama. Kod biljaka ima vitalnu ulogu u mnogim morfološkim i fiziološkim funkcijama kao što su klijanje sjemena i produktivnost (Genchi i dr., 2020). Nikal se koristi kao oplemenjivač čelika u metalurgiji, kao primjesa u legurama, za izradu elektroničke opreme, u proizvodnji odjeće (gumbi, zatvarači...). Nikal u okoliš najčešće dospijeva putem otpada, otpadnih voda, industrijske prašine iizgaranjem fosilnih goriva.

Mjerene koncentracije Ni u tlima Podravine variraju u rasponu od 11 mg/kg do 195 mg/kg s medijanom od 31 mg/kg te predstavljaju najniže koncentracije na području cijele Hrvatske (Halamić i Miko, 2009). Anomalne vrijednosti izmjerene su samo na izoliranim područjima uz Dravu.

3.6 Olovo (Pb)

Olovo je oksifilan element u tragovima. Ne pripada esencijalnim elementima i vrlo je toksičan za biljke, životinje i ljude. U prirodi se javlja u preko 200 minerala, a najvažniji

rudni minerali olova su galenit (PbS), bournonit (PbCuSbS₃) i ceruzit (PbCO₃). Olovo pokazuje sklonost nakupljanju u organskoj materiji te se često nalazi u ugljenu i crnim šejlovima. Mobilnost olova je mala, a njegova dostupnost biljkama ovisi o pH sredini tla. Olovo se nakuplja u organizmima životinja i ljudi, a prenosi se kroz prehrambeni lanac akumulirano u biljkama i životinjama. Uzrokuje brojne zdravstvene probleme, prekida fiziološke funkcije, uzrokuje respiratorne bolesti (astma, rak pluća), napada živčani i kardiovaskularni sustav (Raj i Das, 2023). Olovo u okoliš dospijeva iz raznih izvora kao što su izgaranje benzina i ugljena, putem otpada, rudarenjem i radom talionica. Olovo se koristi i u proizvodnji pigmenata, kemikalija, stabilizatora plastike, baterija, sačme i umjetnih gnojiva (Halamić i Miko, 2009).

4. GEOGRAFSKE I KLIMATSKE KARAKTERISTIKE ISTRAŽIVANOG PODRUČJA

4.1 Geografske karakteristike

Istraživano područje nalazi se u Podravini, istočno od naselja Kalinovac. Podravina pripada hrvatskom dijelu Panonskog bazena, a prostire se od rijeke Drave i gorja Bilogore na sjeveru do sjevernih obronaka Kalničkog gorja na jugu. Prema Brenko i dr. (2020) Podravina predstavlja nizinsko područje koje karakterizira relativno nizak teren s prosječnom nadmorskom visinom od 120 m. Proučavani lokalitet nalazi se u općini Kalinovac u Koprivničko-križevačkoj županiji nedaleko od grada Đurđevca i geografsko botaničkog rezervata Đurđevački pijesci. Lokacija istraživanja prikazana je na Slici 1.

Slika 1. Lokacija istraživanja (Kalinovac) sa ucrtanim područjem i mrežom uzorkovanja

4.2 Klimatske karakteristike

Prema meteorološkim podatcima mjerenim u Đurđevcu na mjernoj postaji hrvatskog državnog hidrometeorološkog zavoda srednja godišnja temperatura iznosi 9,6 °C. Godišnji hod srednje temperature zraka u Đurđevcu postiže maksimum u srpnju s prosjekom od 20°C, a minimum u siječnju s prosječnom temperaturom zraka -2°C (Carek i dr. 2018). Prema istraživanju Bilandžija i dr. (2017) provedenom u blizini lokaliteta Kalinovac, na području Đurđevačkih pijesaka klima je semihumidna, kontinentalna s proljećem toplijim od jeseni. Prosječna godišnja količina oborine u razdoblju od 1991.-2016. iznosi 852 mm sa najvećom količinom oborine u lipnju.

5. GEOLOGIJA I PEDOLOGIJA ISTRAŽIVANOG PODRUČJA

5.1 Geologija

Područje Podravine pripada hrvatskom dijelu Panonskog bazena te središnjem dijelu doline rijeke Drave. Panonski bazen je zalučni bazen (eng. *back-arc basin*) kojeg tvori desetak manjih bazena, a područje ovog istraživanja nalazi se u dravskom bazenu, tj. dravskoj depresiji. Podlogu Panonskog bazena čine dva mega bloka, Alcapa i Tisza-Dacia blok. Na njima su pretežito istaložene neogenske i kvartarne naslage. Nastanak ovih mega blokova dogodio se uslijed translacije Jadranske mikroploče prema Alpama za vrijeme miocena. Došlo je do lateralne ekstruzije dijela naslaga u područje panonskog bazena (Marton i dr., 2007). Današnji geomorfološki izgled Podravine definiran je najvećim dijelom kroz pleistocen i holocen. Prije 11-12 tisuća godina dolazi do velikih klimatskih promjena, značajno zatopljenje dovodi do topljenja velike količine snijega i leda na području Alpi. Posljedično tome dolazi do stvaranja snažnih tokova, a samim time i izražene fluvijalne erozije. Dokaz izražene fluvijalne erozije su mlađe naslage pijeska i šljunka istaložene na starijim slojevima gline i lesa (Feletar i Feletar, 2008). Tijekom kasnog pleistocena i ranog holocena uz rijeku Dravu sa svojim pritocima formirana je i velika aluvijalna ravnica. Prema Brenko i dr. (2020.) aluvijalnu ravnicu čine tri riječne terase.

Najstarija je treća riječna terasa, formirana krajem pleistocena. Izgrađena je od lesnih i glinovito-pjeskovitih naslaga, a materijal je podrijetlom iz rijeke Drave. Za vrijeme njenog formiranja prevladavala je suha i hladna klima koja pogoduje taloženju eolskih naslaga (Brenko i dr., 2020). Druga riječna terasa diskordantno prekriva sedimente treće terase. Ona je erozijsko-akumulacijskog karaktera, a nastala je tijekom drugog Würmskog interglacijala. Ovu terasu karakterizira pojava sedimenata od krupnozrnatih u njenom podnožju pa graduirano sve sitnijih do fino fitnozrnatih siltova na vrhu što ukazuje na potpuni razvoj ove terase. Prema mineralnom sastavu može se pretpostaviti da je podrijetlo materijala ove terase iz Istočnih Alpi (Brenko i dr., 2020). Područje na kojem su uzorkovani uzorci tla (Slika 1) korišteni u ovom radu nalazi se na drugoj terasi rijeke Drave. Prva terasa je najmlađa, nastala je tijekom trećeg Würmskog interglacijala, a smještena je između druge terase i trenutnog kanala rijeke Drave. Zbog promjene toka rijeke i stvaranja meandara ova terasa je podložna velikim promjenama, karakteriziraju je neravne površine i česta preplavljivanja za vrijeme visokih voda. Ova terasa izgrađena je pretežno od pijesaka, šljunkovitih pijesaka i pjeskovitih šljunaka (Šušnjar, 2020).

Nakon velikih poplava i bujica kada se rijeka vraća u svoje korito talože se sitnozrnati materijali, tj. poplavni sedimenti. Oni su dominantno pjeskovite gline i glinoviti siltovi koji postupno prelaze u sitnozrnate sedimente kao što su siltitne gline. Poplavni sedimenti često su prekriveni tlom nastalim raspadom organske tvari (Brenko i dr., 2020).

S vremenom rijeka stvara meandre i mijenja svoje korito pri čemu dolazi do taloženja sitnozrnatog materijala (muljnjaci, gline, glinoviti pijesci), te se oni nazivaju močvarnim sedimentima. Sedimente ovog tipa moguće je pronaći na prvoj i drugoj terasi rijeke Drave.

5.2 Pedologija

Tijekom prethodnih terenskih istraživanja Brenko i dr. (2020) odredili su tipove tla na lokalitetu Kalinovac. Tlo je dominantno tipa močvarnog glejnog tla (eng. *Gleysol*) s utjecajem aluvijalne ravnice. Prema Ružičić (2013) geneza ovog tla uvjetovana je učestalim prekomjernim vlaženjem podzemnom i/ili površinskom vodom, a pojava ovog tla vezana je prije svega uz udubljene forme reljefa sa visokom podzemnom vodom ili obilnim vlaženjem dodatnom površinsko-poplavnom vodom. Močvarno glejno tlo karakteriziraju reducirajuće osobine, ponajviše Fe-oksihidroksidi. One nastaju kao posljedica kompleksnih i varijabilnih redoks uvjeta u tlima ovog tipa (Husnjak, 2014).

6. MATERIJALI I METODE ISTRAŽIVANJA

6.1 Uzorkovanje i priprema uzoraka

U sklopu ovog istraživanja prikupljeno je 56 površinskih uzoraka tla korištenjem Eijelkampove sonde za tla. U svrhu uzorkovanja izrađena je pravilna kvadratna mreža (75 x 75 m) pomoću softvera ArcGis Pro 2.7. Svaka pojedina lokacija uzorkovanja na terenu utvrđena je korištenjem ArcGIS Field Maps softvera, a postignuta preciznost bila je ispod 1 m. Prije uzorkovanja otklonjeno je 10 cm površinskog pokrova te su uzorci tla uzeti uz pomoć sonde s dubine od 10 cm do 30 cm nakon čega su pohranjeni u plastične vrećice i transportirani u laboratorij. Uzorci su sušeni na zraku, prosijani kroz sito od 2 mm te nakon toga mljeveni kako bi se na njima mogle provesti laboratorijske analize.

6.2 Rendgenska fluorescencijska spektroskopija

Geokemijski sadržaji Cr, Ni, Cu, Cd, Zn, Pb i Fe određeni su korištenjem prijenosnog instrumenta za rendgensku fluorescencijsku analizu (pXRF) Hitachi XMET 8000 Expert Geo (Slika 2). Korištene su Soil i MiningLE (eng. *light element*) kalibracije te je za svaki uzorak napravljeno pet mjerenja iz čega je izračunata prosječna vrijednost koncentracije (ISO/TS 10303-1319).

Slika 2. Izvođenje mjerenja instrumentom za rendgensku fluorescencijsku analizu (pXRF) Hitachi XMET 8000 Expert Geo

6.2.1 Princip rada

Rendgenska fluorescencijska spektroskopija je nedestruktivna metoda. Temelji se na registraciji sekundarnog odnosno fluorescentnog rendgenskog zračenja. S ovom metodom može se provesti kvalitativna i kvantitativna analiza. Osim toga, moguće je detektirati koncentracije elemenata u rasponu od nekoliko ppm-a pa sve do 100%. Sekundarno zračenje nastaje ukoliko je neki materijal izložen rendgenskim zračenjem iz rendgenske cijevi, čija je energija dovoljno visoka da izbaci elektron iz neke od unutrašnjih ljuski (K, L, M) atoma u tom materijalu, atomi će zbog nastalih vakancija biti pobuđeni i nestabilni. U niže energetsko stanje vraćaju se uskakanjem elektrona iz vanjskih ljuski pri čemu se oslobađa karakteristično rendgensko zračenje čija je energija jednaka razlici energija elektrona u raznim ljuskama (energetskim nivoima) koja je karakteristična za svaki element (Slika 3) (Tibljaš, 2005).

Slika 3. Shematski prikaz pobude atoma željeza na emisiju fluorescentnog Fe Kα zračenja (Preuzeto iz Tibljaš, 2005)

6.3 Određivanje ukupnog sadržaja ugljika (TC) i sadržaja ugljika iz organskih spojeva (TIC)

Određivanje ukupne količine ugljika (TC, eng. *Totaln Carbon*) i sadržaja ukupnog ugljika iz anorganskih spojeva (TIC, eng. *Total Inorganic Carbon*) provedeno je kako bi se utvrdila količina organske tvari u tlu koja je često zbog svoje velike specifične površine u korelaciji s potencijalno toksičnim elementima promatranim kroz ovaj rad. Analiza je napravljena pomoću uređaja Multi EA 4000 CS. Za obje analize korišteno je od 600 do 800 mg osušenog, usitnjenog i mljevenog uzorka. Analiza ukupne količine ugljika (TC) provedena je na svih 56 uzoraka dok je analiza ukupnog ugljika (TIC) iz anorganskih spojeva provedena na dva uzorka. Razlog zbog kojeg se nije izvršila daljnja TIC analiza su dobivene vrijednosti ispod

granice detekcije nakon čega je zaključeno da je sav ugljik prisutan u uzorku organskog podrijetla. Na to ukazuju i rezultati prikazani u radu Brenko i dr. (2020) u kojem su vrlo male količine karbonatnih minerala kao što su kalcit i dolomit dobivene rendgenskom difrakcijom na prahu (XRD).

6.3.1 Princip rada

Multi EA 4000 CS je sustav za istovremeno ili pojedinačno određivanje ukupnog ugljika u čvrstim uzorcima korištenjem metode visokotemperaturne oksidacije u protoku kisika. Uređaj se sastoji od TC i TIC modula (Slika 4). Unutar uređaja ugrađen je posebni NDIR (eng. *Non-Dispersive Infra-Red*) detektor širokog raspona. Spomenuti detektor omogućuje analizu ugljikovog dioksida nastalog raspadom ugljika u rasponu od nekoliko ppm do postotka. Granica detekcije uređaj iznosi 3 ppm na 3 g uzorka ili 10 µg čistog/elementarnog ugljika. Težina samog uzorka može biti do 3000 mg što ovisi o koncentraciji ugljika u uzorku. Temperatura u komori za izgaranje iznosi 1200 °C, a TC analiza traje 2 do 3 minute. Plin korišten pri procesu je kisik visokog stupnja čistoće (\geq 99,5 %) pod tlakom od 4 do 6 bara, s protokom od otprilike 2,5 l/min (Analytik Jena, 2021).

Slika 4. Uređaj Multi EA 4000 CS za istovremeno ili pojedinačno određivanje ukupnog ugljika u čvrstim uzorcima

Kako bi dobiveni rezultati bili točni, prije početka obje analize potrebno je provesti mjerenje standarda koji sadrži 12% ugljika u svrhu određivanja dnevnog faktora (DF, eng. *Daily Factor*). Pomoću DF je moguće provjeriti i modificirati kalibraciju danim standardom. Svi dobiveni rezultati analize automatski se množe s ovim faktorom (Analytik Jena, 2021).

Slika 5. Vaganje i priprema uzoraka za određivanje ukupnog sadržaja ugljika

Analiza započinje odvagom uzorka, a količina odvage ovisi o procijenjenom sadržaju ugljika u uzorku. U prosjeku se koristi oko 300 mg uzorka, dok se za uzorke tala s procijenjenom malom količinom ugljika koristi i više od 600 mg uzorka (Slika 5). Uzorak mora biti osušen i usitnjen do dimenzija praha koje omogućuju što precizniju provedbu analize (Rak, 2022). Uzorak se izdvaja u keramičku lađicu te se ubacuje u peć. Tamo se uzorak oksidira pri temperaturi od 1200°C. Slika 6 prikazuje uzorke nakon spaljivanja na 1200°C. Reakcija (1) koja se tada odvija:

$$R+O_2 \rightarrow CO_2+H_2O+A \tag{1}$$

A - pepeo zaostao od negorivih tvari

Plin dobiven spaljivanjem uzorka prolazi kroz desikant. Halidi sadržani u plinu se pritom uklanjaju kako ne bi došlo do oštećenja senzora. Potom se sadržaj CO₂ u plinu nosiocu analizira NDIR detektorima koji su selektivni za CO₂ (Analytik Jena, 2021).

Slika 6. Uzorak nakon spaljivanja na 1200°C

TIC analiza se provodi u drugom dijelu uređaja, njome se detektira ukupni ugljik anorganskog podrijetla koji je podrijetlom iz karbonata i hidrogen karbonata u čvrstim uzorcima.

Uzorak se ubacuje u Erlenmeyerovu tikvicu te se postavi na postolje TIC modula (Slika 4.). U tikvicu se uz pomoć dozatora dodaje 35%-tna fosforna kiselina (H₃PO₄) što uzrokuje razgradnju karbonata i/ili hidrogenkarbonata sadržanih u uzorku. Ugljikov dioksid (CO₂) se pročišćava kroz desikator i detektira u TC modulu. Pri tome ne dolazi do termalne oksidacije. Reakcija (2) koja se odvija pri analizi glasi:

$$3(CO_3)^{2-} + 2H_3PO_4 \rightarrow 3H_2O + 3CO_2 + 2(PO_4)^{3-}$$
 (2)

Kako bi se izračunala ukupna količina ugljika iz organskih spojeva (TOC, eng. *Total Organic Carbon*) koristi se diferencijalna metoda. Izračun ovom metodom pogodan je kada uzorci sadrže lake organske komponente, benzene, cikloheksane ili kloroform (Rak, 2022). Vrijednost TOC-a se dobiva oduzimanjem količine ukupnog ugljika iz anorganskih spojeva od ukupnog ugljika u uzorku prema formuli (3).

$$TOC=TC-TIC$$
(3)

TOC – količina ukupnog ugljika iz organskih spojeva (mas.%)

TC – ukupni ugljik (mas.%)

TIC – količina ukupnog ugljika iz anorganskih spojeva

6.4 Faktor obogaćenja

Faktor obogaćenja (EF, eng. *Enrichment Factor*) koristi se kako bi se izrazilo obogaćenje tla pojedinim elementom koji najčešće nije litogenog podrijetla. Izračun faktora obogaćenja izvodi se usporedbom omjera proučavanog elementa s "konzervativnim", tj. referentnim elementom. Konzervativnim elementima se smatraju oni koji se prirodno pojavljuju na određenom području u visokim koncentracijama i potječu uglavnom iz zemljine kore (Fe, Mn, Al, Sc, Ti ili Ca). S obzirom da se pri izračunu koristi univerzalna formula (4) EF se smatra brzim, jednostavnim i laganim alatom za procjenu stupnja obogaćenosti tla (Benhaddya i Hadjel, 2013). Faktor obogaćenja računa se iz omjera promatranog elementa u odnosu na referentni element prema formuli:

EF=(metal/RE)_{uzorak tla}/(metal/RE)_{pozadinska vrijednost}

gdje RE predstavlja vrijednost referentnog elementa, (metal/RE)_{uzorak tla} predstavlja omjer koncentracije analiziranih elemenata (Cr, Ni i Cd) i koncentracije referentnog elementa, (metal/RE)_{pozadinska vrijednost} predstavlja omjer koncentracije elemenata u lokalnim pozadinskim mjerenjima i pozadinske koncentracije referentnog elementa u lokalnim mjerenjima. U ovom radu se kao referentni element koristi željezo zbog svoje visoke i relativno ujednačene koncentracije na cijelom istraživanom lokalitetu, a pozadinske vrijednosti za promatrane elemente kao i željezo preuzete su iz Geokemijskog atlasa Republike Hrvatske (Halamić i Miko, 2009) za područje Podravine. Dobivene brojčane vrijednosti ukazuju na različite razine obogaćenja tla, a posredno i onečišćenja. Vrijednosti od $0,5 \le EF \le 1,5$ ukazuju da koncentracija metala u tlu potječe iz prirodnih procesa trošenja (Brenko i dr., 2020). Tablica 1 prikazuje kategorije obogaćenja tla na temelju EF koje mogu biti indikator kvalitete tla prema Loska i Wiechula (2003).

(4)

Kategorije obogaćenja na temelju Faktora obogaćenja (EF)							
EF < 2	Slabo do minimalno obogaćenje						
2 < EF > 5	Umjereno obogaćenje						
5 < EF > 20	Značajno obogaćenje						
20 < EF > 40	Vrlo visoko obogaćenje						
EF > 40	Izuzetno visoko obogaćenje						

Tablica 1. Kategorije obogaćenja na temelju Faktora obogaćenja (Loska i Wiechula, 2003).

6.5 Indeks geoakumulacije

Indeks geoakumulacije (Igeo) koristi se za procjenu antropogenog utjecaja vrijednosti koncentracije pojedinog elementa u tlu (Ružičić i dr., 2022). Izračunava se pomoću formule:

Igeo=log₂($C_n/1.5B_n$)

(5)

gdje Cn predstavlja prosječni sadržaj elementa n kroz profil tla na lokalnoj razini dok Bn predstavlja pedogeokemijski sadržaj istog elementa u analiziranom tlu (Ružićić i dr., 2022). U ovom radu korišteni su vrijednosti medijana za odabrane elemente na području Podravine preuzeti iz Halamić i Miko (2009). Prema vrijednosti Igeo moguće je kategorizirati tlo u sedam kategorija (Tablica 2)

Igeo	Kategorija	Stanje tla
< 0	0	Nezagađeno
0-1	1	Nezagađeno do umjereno zagađeno
1-2	2	Umjereno zagađeno
2-3	3	Umjereno do jako zagađeno
3-4	4	Jako zagađeno
4-5	5	Jako do izrazito zagađeno
> 5	6	Izrazito zagađeno

Tablica 2. Kategorije tla na temelju indeksa geoakumulacije (Igeo).

6.6 Faktor onečišćenja

Faktor onečišćenja (CF, eng. *Contamination factor*) predstavlja omjer koncentracije metala izmjerene u uzorku i lokalne pozadinske vrijednosti tog metala (Pekey i dr., 2004) prema formuli:

$$CF = Cx/Cy$$
(6)

gdje Cx predstavlja mjerenu koncentraciju odabranog elementa dok Cy predstavlja lokalnu pozadinsku vrijednost za isti element. Kao lokalne pozadinske koncentracije za odabrane elemente u ovom radu su korištene vrijednosti preuzete iz Halamić i Miko (2009). Prema Pekey i dr. (2004) s obzirom na faktor onečišćenja moguće je klasificirati tlo prema onečišćenju (Tablica 3).

CF	Stanje tla
< 1	Neonečišćeno
$1 \le CF \le 3$	Umjereno onečišćeno
$3 \le CF \le 6$	Značajno onečišćeno
CF > 6	Izrazito onečišćeno

Tablica 3. Kategorije tla prema faktoru onečišćenja.

6.7 Prostorna distribucija i statistička analiza teških metala u tlu

Korištenjem softvera ArcGIS Pro 2.7 provedena je metoda Kriging interpolacije nad podacima u svrhu određivanja prostorne distribucije odabranih fizikalno-kemijskih parametara tla. Izrađene su karte distribucije elemenata, te karte EF, CF i Igeo. Većina podataka raspoređena je u šest klasa koristeći metodu klasifikacije prirodnih prekida prema Jenkinsu (eng. *natural breaks method*).

Podaci su podvrgnuti osnovnoj statističkoj analizi korištenjem TIBCO Statistica 13.5. Na svim je podatcima izračunata osnovna deskriptivna statistika koja uključuje minimum, maksimum, standardnu devijaciju i srednju vrijednost. S obzirom da geološki podaci vrlo rijetko slijede normalnu distribuciju, prije statističke analize potrebno ih je transformirati i standardizirati. Standardizacija podataka napravljena je u obliku centrirane transformacije logaritamskih omjera (CLR, eng. *Centered log-ratio transformation*), korištenjem softvera CoDaPack (Comas-Cufí i Thió-Henestrosa, 2011).

Kako bi se utvrdili statistički značajni rezultati i odbacila nulta hipoteza, na svim promatranim podacima proveden je t-test. Nulta hipoteza pretpostavlja da ne postoji razlika između skupina podvrgnutih različitim utjecajima, već pretpostavlja da se populacije ne razlikuju po ispitivanoj karakteristici, odnosno da su uočene razlike slučajne. Što je niža pvrijednost, manja je vjerojatnost da je nulta hipoteza točna i obrnuto. Obično se koriste razine pouzdanosti od 95%, tj. granica p-vrijednosti jednaka je 5% ($\alpha = 0,05$). Dakle, ako je pvrijednost manja od 0,05, nulta hipoteza se odbacuje, a rezultat je statistički značajan. Nasuprot tome, ako je p-vrijednost veća od 0,05, nulta hipoteza se ne odbacuje, a rezultat nije statistički značajan s α razinom značajnosti. Korelacijska matrica koja prikazuje korelacijske koeficijente analiziranih fizikalno-kemijskih parametara izrađena je pomoću jednadžbe (7):

$$Correl(X,Y) = \frac{\sum (x-\overline{x})(y-\overline{y})}{\sqrt{\sum (x-\overline{x})^2 \sum (y-\overline{y})^2}}$$
(7)

Hijerarhijska metoda grupiranja (eng. *hierarchical clustering analysis*, HCA), koristeći dijagrame stabala (eng. *joint tree diagrams*), provedena je kako bi se bolje razlikovala korelacija svojstava tla i geokemijskih podataka među uzorcima. U ovoj studiji, euklidska udaljenost (eng. *Euclidean distance*) odabrana je kao glavna mjera udaljenosti (mjerenje sličnosti) između promatranih varijabli. Varijable koje imaju najveću sličnost grupirane su prve, na nižoj udaljenosti. Grupe su međusobno povezane putem pravila povezivanja. Kako bi se dobili homogeniji i geokemijski sličniji klasteri, Wardova metoda korištena je kao glavno pravilo povezivanja, uključujući algoritam aglomerativnog klasteriranja. Wardova metoda, koja se naziva i Wardov kriterij minimalne varijance, minimizira varijancu unutar klastera. Na svakom koraku udaljenosti grupiraju se parovi klastera koji dovođe do minimalnog povećanja ukupne varijance unutar klastera. Uz HCA metodu napravljena je i analiza glavnih komponenti (eng. *Principal component analysis*, PCA) provedena kako bi se skup podataka protumačio drastičnim smanjenjem dimenzionalnosti, ali na takav način da se većina informacija u podacima i dalje čuva.

7. REZULTATI

7.1 Rezultati geokemijske analize

Geokemijska analiza provedena je korištenjem prijenosnog instrumenta za rendgensku fluorescencijsku analizu (pXRF) Hitachi XMET 8000 Expert Geo na način koji je opisan u poglavlju 5.2. Rezultati analize prikazani su u Tablici 4. Na svakom uzorku provedena je mjerenje i utvrđene su koncentracije elemenata Cr, Ni, Zn, Cu, Cd i Pb. Dobiveni rezultati uspoređeni su s maksimalnim dopuštenim vrijednostima (MDK) u tlu za pojedine kemijske elemente prema Pravilniku o zaštiti poljoprivrednog zemljišta od onečišćenja (NN 71/2019). Pravilnik definira različite maksimalne dopuštene vrijednosti s obzirom na pH vrijednosti tla na kojem se analiza provodi. Prema Šušnjar (2020) na promatranom području pH vrijednosti tla su većinom manje od pH 6, a ponegdje od pH 5. U Tablici 4 crvenom bojom označene su koncentracije koje prelaze MDK za pojedini element pri pH vrijednosti tla 5-6, a vrijednosti podebljane crnom bojom koje prelaze MDK pri pH vrijednosti tla manjoj od 5 (Tablica 5). Najveća odstupanja od MDK primijećena su kod Cr i Cd. Elementi Ni i Zn imaju manja odstupanja, njihova koncentracija većinom premašuje vrijednost MDK za tla s pH vrijednošću manjom od 5, dok su koncentracije Cu i Pb unutar MDK. Maksimalna izmjerena koncentracija Cr iznosi 403,00 mg/kg, a najmanja 145,20 mg/kg što je daleko više od dopuštenih 80 mg/kg prema pravilniku (NN 71/2019). Koncentracije Cd u tlu variraju od 0 do 15 mg/kg. Koncentracije Ni prelaze najveću MDK u dva mjerena uzorka, a koncentracije variraju od 13,6 do 54,2 mg/kg. Koncentracije Zn u mjerenim uzorcima kreću se od 36,20 do 112,40 mg/kg, koncentracije Cu od 0 do 29,4 mg/kg, a koncentracije Pb od 0 do 42,60 mg/kg.

Tablica 4. Koncentracije pojedinih elemenata dobivene geokemijskom analizom. Deblje označene vrijednosti predstavljaju vrijednosti iznad dopuštenih MDK vrijednosti kod pH <5, a crveno označene vrijednosti predstavljaju vrijednosti iznad MDK kod pH 5-6. N/A – nije analizirano

Ime Cr (mg/kg)		Ni (mg/kg)	Cu (mg/kg)	Zn (mg/kg)	Cd (mg/kg)	Pb (mg/kg)
K-HG 1-1	362,6	34,8	15,75	55,6	2	34,6
K-HG 1-2	379,8	51,6	21,8	63	10,25	28
K-HG 1-3	396,6	38,4	13,8	58,6	6	31,6
K-HG 2-1	298,2	29,8	11,8	57,2	4,5	25
K-HG 2-2	372,2	40,6	17,6	56,4	3,75	31,2
K-HG 2-3	344,6	36,2	15,2	62,2	5,25	35,6
K-HG 3-1	355,2	34,8	17,6	64,6	7	31,4
K-HG 3-2	273,8	35	13,4	52,6	7,5	23,4
K-HG 3-3	339	45,2	19,2	70,4	3,67	34,2
K-HG 4-1	261	39,8	14,75	65,4	2,67	30,4
K-HG 4-2	171,8	30,6	15,6	66	6	17,8
K-HG 4-3	287,6	48,8	23	73,6	3,6	24,6
K-HG 4-4	353,8	37,6	18	66	3	32,6
K-HG 4-5	341,2	35,8	16,75	56,2	6,33	28,4
K-HG 5-1	285,4	46	22,6	85,8	10,5	26,8
K-HG 5-2	241,8	33,6	15,8	60,6	5,67	24,8
K-HG 5-3	206,2	32,6	15,25	60	2,33	33,6
K-HG 5-4	164,2	41,4	20	76,6	4	32,2
K-HG 5-5	145,2	30	12,4	59,4	7	31,2
K-HG 5-6	331	32,2	10,5	53,2	4,67	29,2
K-HG 5-7	184,2	34,8	14,4	48,8	3	21,4
K-HG 6-1	245,2	45	20,6	85	6	24,6
K-HG 6-2	308,4	32,2	14,25	57,2	7	24
K-HG 6-3	271	35,2	14,8	70,8	5,67	31,8
K-HG 6-4	181,6	30,8	15,6	60,2	3,67	35,8
K-HG 6-5	155,4	27,8	N/A	42,8	1,5	20,4
K-HG 6-6	286	28,2	11,67	44,2	1	17,2
K-HG 7-1	165,2	39,2	17,2	84,6	8	29,4
K-HG 7-2	267,4	21,8	11,67	42	5,5	17,8
K-HG 7-3	358,4	37,8	18,75	61,4	4	26,6
K-HG 7-4	199,8	48,2	22,8	80,4	5,75	34
K-HG 7-5	247	21,67	N/A	36,4	N/A	19
K-HG 7-6	315,4	31,2	13,4	58,6	4,67	27,4
K-HG 8-1	147,8	31,8	16,5	67,2	3,75	26
K-HG 8-2	293,2	27,4	14,67	53,4	N/A	20,2
K-HG 8-3	403	39,6	18,8	65,4	5,75	23,6
K-HG 8-4	331,4	39,8	19,2	65	4,25	22,4

K-HG 8-5	159,6	27,8	15	60	5,67	17,8
K-HG 8-6	324	27,2	14,6	39,2	2	17,2
K-HG 9-1	158,2	44,8	18,4	112,4	10,6	30,2
K-HG 9-2	167,6	35	9,8	55	3,6	28
K-HG 9-3	229,8	36,6	13	56,4	5	26,8
K-HG 9-4	247,2	54,2	27,6	80,6	14,8	N/A
K-HG 9-5	289,8	13,6	2,4	36,2	1,6	15,2
K-HG 9-6	146,4	43,6	16,8	74,4	12,8	N/A
K-HG 10-1	290,4	42,6	9	62,8	3,4	22,4
K-HG 10-2	196,2	40,4	19,2	57,4	4	26,8
K-HG 10-3	334	36,6	16,8	67	2,4	24
K-HG 10-4	295,6	30,6	10,8	46,8	0,8	42,6
K-HG 10-5	280,4	28,8	11	52	1,8	22,2
K-HG 11-1	292,2	33,8	21,8	69	1,2	27,4
K-HG 11-2	172	32	6,8	74,8	5,8	18,8
K-HG 11-3	324	28,8	10,8	45,8	4,6	18
K-HG 11-4	307,4	27,6	10,4	51,6	1	20,4
K-HG 11-5	326,4	31,8	12,2	60,8	2,4	23
K-HG 12-1	278,4	47,4	29,4	88	15	15,8
Srednja vrijednost	269,5	35,5	15,8	62,1	5,1	26,0
Minimum	145,2	13,6	2,4	36,2	0,8	15,2
Maksimum	403	54,2	29,4	112,4	15	42,6
St. dev.	73,4	7,7	4,8	13,9	3,2	6,0

Tablica 5. MDK vrijednosti prema Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja NN 71/2019.

pH tla u 1 M otopini KCl-a								
Element	<5	5 do 6						
Cr	40	80						
Ni	30	50						
Cu	60	90						
Zn	60	150						
Cd	1	1,5						
Pb	50	100						

7.2 Ukupni sadržaja ugljika (TC) i sadržaj ugljika iz organskih spojeva (TIC)

Rezultati TC i TIC analize prikazani su u Prilogu 1. Iz dobivenih rezultata vidljivo je da TC varira od 0,4 do 3,4 mas.%. Kao što je navedeno u poglavlju 6.3 mjerenje TIC-a provedeno je samo na dva uzorka jer su analizom dobivene vrijednosti ispod granice detekcije nakon

čega je zaključeno da je sav ugljik prisutan u uzorku organskog podrijetla. Analogno tome vrijednost ukupnog ugljika (TOC) u uzorku odgovara vrijednosti TC prema formuli (3).

7.3 Faktor obogaćenja (EF)

Faktor obogaćenja izračunat je prema postupku opisanom u poglavlju 6.4. Rezultati dobiveni izračunom prikazani su u Prilogu 2. Usporedbom izračunatih vrijednosti s Tablicom 1 utvrđene su kategorije obogaćenja za svaki uzorak s obzirom na pojedini element. S obzirom na elemente Ni, Cu, Zn i Pb svi uzorci pokazuju nikakvo do minimalno obogaćenje što odgovara vrijednostima faktora obogaćenja manjima od 2. Faktor obogaćenja izračunat za element Cr kreće se od 0,38 do 4,91 te su uzorci s obzirom na Cr svrstani od kategorije slabog do minimalnog obogaćenja i umjerenog obogaćenja. Izračunati faktori obogaćenja su daleko najviši za kadmij te se oni kreću od 0 do 31,68 te je većina uzoraka svrstana u kategoriju značajnog i vrlo visokog obogaćenja.

7.4 Indeks geoakumulacije (Igeo)

Indeks geoakumulacije izračunat je prema postupku opisanom u poglavlju 6.5, a dobiveni rezultati prikazani su u Prilogu 3. Prema Tablici 2 tlo se prema indeksu geoakumulacije može podijeliti u sedam kategorija, od nezagađenog do izrazito zagađenog tla. Igeo za element Cr kreće se u rasponu od 0,368 do 1,841 i tlo je s obzirom na ovaj element nezagađeno do umjereno zagađeno i umjereno zagađeno. Za elemente Ni, Zn, Cu i Pb vrijednost Igeo je većinski negativna i prema tome se tlo svrstava u kategoriju nezagađeno dok se samo ponegdje javljaju vrijednosti Igeo između 0 i 1 koje klasificiraju tlo kao nezagađeno do umjereno zagađeno. Kao i u slučaju faktora obogaćenja, element Cd pokazuje i najveće vrijednosti indeksa geoakumulacije. On se kreće u rasponu od 0 do 5,644 što tlo svrstava u jako do izrazito zagađeno.

7.5 Faktor onečišćenja (CF)

Faktor onečišćenja izračunat je prema postupku opisanom u poglavlju 6.6, a rezultati su prikazani u Prilogu 4. Faktorom onečišćenja određeno je stanje tla prema Tablici 3. Onečišćenje tla izraženo je za elemente Cr i Cd. Faktor onečišćenja za krom se kreće u rasponu od 1,94 do 5,37 prema čemu se tlo svrstava pod umjereno ili značajno onečišćeno. Vrijednosti CF za kadmij su daleko najveće u usporedbi sa svim ostalim promatranim elementima. One se kreću u rasponu od 0 do 75 prema čemu većina uzoraka pokazuje izrazito onečišćenje kadmijem. S obzirom na Ni tlo je većinom umjereno onečišćeno, a CF

se kreće u rasponu od 0,44 do 1,75. Tlo je ne onečišćeno ili umjereno onečišćeno ako se promatraju vrijednosti CF izračunate za elemente Cu, Zn i Pb. Vrijednosti CF za bakar variraju od 0 do 1,4, za olovo od 0 do 1,70 i za cink od 0,49 do 1,52.

7.6 Statističke analize

Korelacijska matrica promatranih parametara tla prikazana je u Tablici 6. Može se vidjeti da većina promatranih podataka pokazuje statistički značajne vrijednosti (označene crveno), dok manji broj podataka pokazuje statistički nepouzdane podatke. Statistički pouzdane vrijednosti s koeficijentima korelacije iznad 0,5, odnosno ispod -0,5 (koje ukazuju na izraženu pozitivnu ili negativnu korelaciju) označene su podebljano. Krom pokazuje negativnu korelaciju prema Fe (-0,51) i As (-0,61), dok istovremeno pokazuje pozitivnu korelaciju prema Si (0,78), pH (0,57), te udjelima silta (0,66) i gline (0,51). Nikal pokazuje pozitivnu korelaciju prema Zn (0,67), pH (0,52) i udjelu silta (0,57), dok ne pokazuje izraženu negativnu korelaciju. Bakar pokazuje izraženu negativnu korelaciju prema udjelu Al (0,64) i pH (-0,57), dok ne pokazuje izražene pozitivne korelacije prema nekim promatranim parametrima. Cink pokazuje srednje izraženu pozitivnu korelaciju prema Al (0,57), pH (0,57) i udjelu silta (0,56), dok s druge strane ne pokazuje izraženiju negativnu korelaciju prema ostalim promatranim parametrima. Kadmij pokazuje negativnu korelaciju prema Si (-0,60), Al (-0,62), pH (-0,58) i udjelu silta (-0,57), dok ne pokazuje značajne pozitivne korelacije. Udjeli olova jedino pokazuju izraženiju negativnu korelaciju prema Fe (-0,61), dok ostale prema ostalim parametrima praktički ne pokazuje statistički pouzdanu korelaciju.

Tablica 6. Korelacijska matrica promatranih teških metala i drugih značajnih parametara tla na području istraživanja. Crveno označeni uzorci pokazuju statistički pouzdane vrijednosti (p<0,05), dok podebljane vrijednosti pokazuju izraženiju korelaciju.

Varijabla	Cr	Ni	Cu	Zn	Cd	Pb	Fe	Si	Al	рН	Glina	Silt	Pijesak	TC
Cr	1,00													
Ni	0,41	1,00												
Cu	-0,18	-0,24	1,00											
Zn	0,20	0,67	-0,27	1,00										
Cd	-0,47	-0,31	0,39	-0,39	1,00									
Pb	0,17	-0,37	-0,18	-0,37	-0,35	1,00								
Fe	-0,51	0,22	-0,25	0,26	0,10	-0,61	1,00							
Si	0,78	0,40	-0,44	0,39	-0,60	0,18	-0,44	1,00						
Al	0,42	0,48	-0,64	0,57	-0,62	0,10	-0,06	0,83	1,00					
pН	0,57	0,52	-0,57	0,57	-0,58	-0,08	-0,01	0,83	0,84	1,00				
Glina	0,51	0,47	-0,34	0,40	-0,39	-0,02	0,02	0,63	0,64	0,64	1,00			
Silt	0,66	0,57	-0,48	0,56	-0,57	-0,01	-0,13	0,90	0,87	0,88	0,78	1,00		
Pijesak	0,06	-0,15	-0,27	0,02	-0,25	-0,05	-0,11	0,24	0,15	0,19	-0,40	0,00	1,00	
TC	-0,20	0,23	-0,48	0,44	-0,27	-0,15	0,59	-0,10	0,26	0,21	0,20	0,10	-0,14	1,00

U ovom istraživanju, na temelju vizualne interpretacije dendrograma, hijerarhijska klaster analiza rezultirala je formiranjem dvije glavne grupe (klastera) podataka (Slika 7). Grupe su podjednake veličine, te obje sadrže 7 parametara. Prva grupa sadrži parametre Cr, Ni, Si, Pb, Zn, glina i silt. Vidljiva je značajna bliska korelacija cinka i udjela silta, te Si i Ni na području istraživanja. Unutar druge grupe nalaze se Cu, Fe, Al, pH, pijesak, Cd i TC. Vidljiva je bliska korelacija između Al i pH, te djelomično udaljena korelacija između Cd i TC.

Hijerarhijski klaster dijagram 14 parametara tla

Slika 7. Dijagram hijerarhijske klaster analize promatranih parametara tla

Analiza glavnih komponenti (PCA) promatranih parametara tla rezultirala je s 14 glavnih komponenti (PC). Obzirom na izgled krivulje svojstvenih vrijednosti (eng. eigenvalue) (Slika 8a), gdje se točka infleksije nalazi između treće i četvrte glavne komponente, te vrijednosti svojstvenih vektora (Slika 8b) ukazuje da se prvih tri glavne komponente mogu promatrati i vizualno prikazivati. Odabrane su prve dvije glavne komponente s obzirom da imaju najveći udio u ukupnoj varijanci (PC1 = 41,35%; PC2 = 26,60%). Projekcija glavnih komponenti (Slika 8c) ukazuje na povezanost većine parametara tla s udjelima Ni, Cr i Zn, dok se doima da udjeli Pb, Cd i Cu ne pokazuju povezanost s drugim parametrima tla nego da potencijalno postoji drugi utjecaj na njihove udjele.

Slika 8. Analiza glavnih komponenti tla na području istraživanja. a) krivulja svojstvenih vrijednosti (eng. *scree plot of total factor variances*), b) utjecaj (težina) pojedinih faktora i c) projekcija glavnih komponenti PC1 i PC2

7.7 Prostorna distribucija teških metala

Udjeli kadmija (Slika 9) pokazuju neravnomjernu raspodjelu duž istraživanog područja. Moguće je raspoznati nekoliko zona s povišenim vrijednostima, poglavito uz zapadni rub istraživanog područje, te u središnjem dijelu terena. Faktor obogaćenja pokazuje povišene vrijednosti duž gotovo cijelog područja, što se može okarakterizirati kao značajno ili vrlo visoko obogaćenje. Faktor onečišćenja prati faktor obogaćenja, te ukazuje na tlo izrazito onečišćeno kadmijem na istraživanom području. Indeks geoakumulacije također ukazuje na jako zagađeno do izrazito zagađeno tlo duž cijelog središnjeg dijela, s tek umjereno zagađenim istočnim dijelom terena.

Krom pokazuje vrlo povišene vrijednosti, posebice u sjevernom dijelu istraživanog područja gdje vrijednosti idu i preko 390 ppm-a (Slika 10). Maksimum vrijednosti je zabilježen u točki 8-3 (403 ppm). Međutim, faktor obogaćenja pokazuje nikakvo ili minimalno obogaćenje u zapadnom dijelu, te umjereno obogaćenje u sjevernom i istočnom dijelu terena. Faktor onečišćenja pokazuje umjereno do značajno onečišćeno tlo na istraživanom području, dok indeks geoakumulacije ukazuje na nezagađeno do umjereno zagađeno tlo.

Koncentracija bakra (Slika 11) povišena je na sjevernom, zapadnom i središnjem dijelu istraživanog područja. Nešto niže vrijednosti zabilježene su na istočnom dijelu istraživanog područja, koji i po satelitskoj snimci vizualno odudara od ostatka promatranog područja. Međutim, faktor obogaćenja, faktor onečišćenja te indeks geoakumulacije ukazuju na nezagađeno tlo.

Vrijednosti nikla prate vrlo sličnu distribuciju kao i bakar (Slika 12). Povišene vrijednosti zabilježene su duž sjevernog i zapadnog dijela istraživanog područja, dok su najmanje vrijednosti zabilježene u istočnom i južnom dijelu terena, koji se podudara sa zonama pješčanih nanosa. Faktor obogaćenja i indeks geoakumulacije ukazuju na nezagađeno tlo, dok faktor onečišćenja ukazuje na umjereno onečišćeno tlo duž središnjeg dijela, te na neonečišćeno tlo duž istočnog dijela promatranog područja.

Koncentracije olova pokazuju povišene vrijednosti na sjevernom dijelu istraživanog područja (Slika 13). Najviša vrijednost je zabilježena na južnom dijelu promatranog područja, u točki 10-4 (42,60 ppm). Slično kao i kod nikla, faktor obogaćenje i indeks geoakumulacije ukazuju na nezagađeno tlo, dok faktor onečišćenja ukazuje na umjereno onečišćeno tlo duž sjevernog, središnjeg i zapadnog dijela, te na nezagađeno tlo duž istočnog dijela promatranog područja

Koncentracija cinka (Slika 14) pokazuje niske vrijednosti duž cijelog istočnog i središnjeg dijela promatranog područja. Djelomično povišene vrijednosti zabilježene su uz sami zapadni rub, neposredno uz lokalnu cestu koja tamo prolazi. Faktor obogaćenja i indeks geoakumulacije ukazuju na nezagađeno tlo, dok faktor onečišćenja ukazuje na umjereno onečišćene dijelove duž zapadnog dijela terena.

Slika 9. Prostorna distribucija a) kadmija (mg/kg), b) faktora obogaćenja kadmija, c) faktora onečišćenja kadmija i d) indeksa geoakomulacija kadmija na području istraživanja

Slika 10. Prostorna distribucija a) kroma (mg/kg), b) faktora obogaćenja kroma, c) faktora onečišćenja kroma i d) indeksa geoakomulacija kroma na području istraživanja

Slika 11. Prostorna distribucija a) bakra (mg/kg), b) faktora obogaćenja bakra, c) faktora onečišćenja bakra i d) indeksa geoakomulacija bakra na području istraživanja

Slika 12. Prostorna distribucija a) nikla (mg/kg), b) faktora obogaćenja nikla, c) faktora onečišćenja nikla i d) indeksa geoakomulacija nikla na području istraživanja

Slika 13. Prostorna distribucija a) olova (mg/kg), b) faktora obogaćenja olova, c) faktora onečišćenja olova i d) indeksa geoakomulacija olova na području istraživanja

Slika 14. Prostorna distribucija a) cinka (mg/kg), b) faktora obogaćenja cinka, c) faktora onečišćenja cinka i d) indeksa geoakomulacija cinka na području istraživanja

8. RASPRAVA

Geokemijskom analizom uzoraka utvrđene su različite koncentracije potencijalno toksičnih elemenata. Prema Pravilniku o zaštiti poljoprivrednog zemljišta od onečišćenja (NN 71/2019), najveća odstupanja od MDK primijećena su za Cr i Cd. Krom je element koji se najčešće nalazi u nekim tipovima magmatskih i metamorfnih stijena (Alloway, 1995). Minerali koji u svojoj strukturi sadrže Cr su primarni minerali nastali magmatskim ili metamorfnim procesima poput olivina, piroksena, sulfida i minerali grupe spinela. S obzirom da je istraživana lokacija smještena na drugoj riječnoj terasi rijeke Drave, čije je podrijetlo materijala iz Istočnih Alpi (Brenko i dr., 2020), može se zaključiti da bi ovako velike koncentracije kroma mogle biti povezane s njim. Povećane koncentracije kroma u tlu nastalom na riječnim terasama zabilježeno je i u nekim prethodnim istraživanjima (Izbicki i dr., 2008; Morrison i dr., 2009; Morrison i dr., 2015; Ružičić i dr., 2022) pri čemu autori navode da je krom donesen i taložen u aluvijalnim materijalima iz planinskih područja.

Kadmij je za razliku od kroma, element koji u prirodi dolazi iz antropogenih izvora. Jedan od izvora svakako može biti i poljoprivredna aktivnost, odnosno pretjerana upotreba agrokemikalija. Neke vrste fosfata mogu sadržavati određenu koncentraciju kadmija (Balderrachi i dr., 2011). U ovom istraživanju, kadmij se može povezati s agrokemikalijama jer je lokacija smještena na poljoprivrednom području. Prema Ružičić i dr. (2019), povećane koncentracije kadmija pronađene su u tlu uslijed utjecaja različitih agrokemikalija.

Elementi poput Ni i Zn imaju manja odstupanja, njihova koncentracija većinom premašuje vrijednost MDK za tla s pH vrijednošću manjom od 5, dok su koncentracije Cu i Pb unutar MDK vrijednosti.

Faktor obogaćenja izračunat je prema postupku opisanom u poglavlju 6.4. Elementi poput Ni, Cu, Zn i Pb pokazuju slabo do minimalno obogaćenje što odgovara vrijednostima faktora obogaćenja manjima od 2. Prema faktoru obogaćenja izračunatom za element Cr tla su svrstana od kategorije slabog do minimalnog ili umjerenog obogaćenja. Izračunati faktori obogaćenja su najveći za kadmij te je većina tla svrstana u kategoriju značajnog i vrlo visokog obogaćenja.

S obzirom da ovaj parametar pokazuje mjeru obogaćenja tla pojedinim elementom koji najčešće nije geogenog podrijetla, može se zaključiti da je Cd antropogenog podrijetla. Prema Brenko i dr. (2020) vrijednosti faktora obogaćenja od 0,5 do 1,5 ukazuju da koncentracija metala u tlu potječe iz prirodnih procesa trošenja.

Istraživano tlo se prema indeksu geoakumulacije (Igeo) može podijeliti u sedam kategorija, od nezagađenog do izrazito zagađenog tla. Kao i u slučaju faktora obogaćenja, Cr i Cd imaju najveće vrijednosti. U slučaju kroma, tlo se može klasificirati kao nezagađeno do umjereno zagađeno ili umjereno zagađeno s analiziranim elementom. Kao i u slučaju faktora obogaćenja, element Cd pokazuje i najveće vrijednosti indeksa geoakumulacije te se tlo svrstava u kategoriju jako do izrazito zagađenog. Indeks geoakumulacije (Igeo) koristi se za procjenu antropogenog utjecaja pojedinog elementa u tlu (Ružičić i dr., 2022).

Osim navedenih parametara faktora obogaćenja i indeksa geoakumulacije izračunat je i faktor onečišćenja (CF) koji predstavlja omjer koncentracije metala izmjerene u uzorku i lokalne pozadinske vrijednosti istraživanog metala (Pekey i dr., 2004). Onečišćenje tla izraženo je za elemente Cr i Cd. Faktor onečišćenja za Cr tlo svrstava pod umjereno ili značajno onečišćeno. Vrijednosti CF za kadmij su daleko najveće u usporedbi sa svim ostalim promatranim elementima pri čemu svrstavaju tlo kao izrazito onečišćeno s navedenim elementom.

Ukoliko se uzmu u obzir sva tri analizirana pokazatelja (EF, Igeo, CF) za tlo istraživanog područja, rezultati upućuju da je Cr najvjerojatnije geogenog podrijetla, dok je kadmij antropogenog. Kako je prethodno navedeno, Cr je najvjerojatnije rezultat procesa trošenja bazičnih i ultrabazičnih magmatskih stijena i transporta aluvija iz istočnih Alpi. Prema (Morrison i dr., 2015), povećane koncentracije Cr određene u tlima Sacramento doline rezultat su trošenja magmatskih stijena i transporta u aluvijalnu ravnicu područja Sierra Nevade.

Prostorna raspodjela kadmija pokazuje par zona s povišenim koncentracijama prvenstveno uz zapadni rub istraživanog područje, te u središnjem i južnom dijelu istraživanog područja. Prostorna karta za Igeo u podudarnosti je s prostornom raspodjelom koncentracije kadmija što ukazuje da kadmij potječe iz antropogenih izvora. S obzirom da su zapadno od istraživanog područja smještena dva potencijalna antropogena izvora različitih metala, moguće je ovakvu raspodjelu kadmija povezati s njima. Prostorna distribucija faktora obogaćenja pokazuje da je skoro cijelo istraživano područje vrlo visokog obogaćenja. Ukoliko se usporedi prostorna distribucija CF-a (Slika 9) s distribucijom EF-a za Cd, vidi se velika podudarnost.

Prostorna raspodjela kroma pokazuje vrlo povišene vrijednosti (Slika 10), posebice u sjevernom dijelu istraživanog područja. Krom je ovom sjevernom dijelu povećan

najvjerojatnije uslijed dotoka materijala bogatih s olivinima ili piroksenima iz Alpi. Ostale prostorne raspodjele (EF, CF, Igeo) za ovaj element podudaraju se što upućuje na isti izvor i način pojavljivanja ovog analiziranog elementa.

Prostorna raspodjela bakra (Slika 11) povišena je na sjevernom, zapadnom i središnjem dijelu istraživanog područja. Ovakva distribucija odgovara distribuciji kadmija te se potencijalno može povezati s upotrebom agrokemikalija. Naime, već je prethodno spomenuto u tekstu da je istraživano područje poljoprivrednog tipa, tj. pod stalnim utjecajem agrokemikalija. Poznato je da se Cu dodaje u tlo uslijed poljoprivrednih aktivnosti (Bonten i dr., 2008), te da se uvelike koristi kao gnojivo (Schipper i dr., 2008).

Prostorna distribucija nikla u podudarnosti je s bakrom (Slika 12). Povišene vrijednosti zabilježene su duž sjevernog i zapadnog dijela istraživanog područja, dok su najmanje vrijednosti zabilježene u istočnom i južnom dijelu terena, koji se podudara sa zonama pješčanih nanosa.

Prostorna distribucija olova pokazuje povišene vrijednosti na sjevernom dijelu istraživanog područja (Slika 13). Ovakva distribucija je u podudarnosti s kromom. Postoji mogućnost da je olovo taloženo u aluvijalnim materijalima bogatim sa sulfidnim mineralima koji ga u svojoj strukturi mogu ugrađivati. Prema Halamić i Miko (2009) ove velike koncentracije olova mogu biti povezane s orudnjenjem olova uzvodno (Austrija, Slovenija) i s intenzivnom rudarskom aktivnošću u protekla dva stoljeća (Bleiberg, Mežica i dr.). Povišene vrijednosti olova primijećene su uz lokalne prometnice.

Prostorna raspodjela cinka pokazuje povišene vrijednosti uz sami zapadni rub, neposredno uz lokalnu cestu koja tamo prolazi (Slika 14). Moguće je da uslijed prometa dolazi do povećanih koncentracija ovog elementa na površini tla. Cink je također poznat kao mogući izvor iz prometnica (Sollitto i dr., 2010). Prema Jiries i dr. (2001), cink može u sustav tla doći i djelovanjem mehaničke abrazije i curenja ulja iz vozila, tako da su visoke koncentracije u području istraživanja vjerojatno povezane uslijed prometa većih kamiona i traktora u i iz industrijskih jedinica ili okolnih manjih odlagališta otpada.

Statističke analize potvrđuju pretpostavku o dominantno antropogenom unosu Pb, Cu i Cd u sustav tla. Napravljene su dodatne statističke HCA i PCA analize, unutar koje su uključeni samo promatrani teški metali (Pb, Zn, Cd, Cu, Ni i Cr) te željezo, kao element za koji je prijašnjim istraživanjima dokazan dominantno geogeni utjecaj (Brenko i dr., 2020; Brenko i dr., 2021). Prema hijerarhijskoj klaster analizi (Slika 15), može se uočiti da olovo i kadmij

tvore udaljene grupe s preostalim elementima, dokazujući hipotezu da je riječ o elementnima koji su uneseni u sustav primarno antropogenim utjecajem.

Hijerarhijski klaster dijagram 7 parametara tla

Slika 15. Hijerarhijska klaster analiza teških metala i željeza

Analiza glavnih komponenata teških metala i geogenog željeza (Slika 16) ukazuje da su cink i nikal na dijagramu jednako usmjereni kao i željezo, odnosno da su ova dva elementa dominantno geogenog podrijetla. Njima se može pridružiti i krom, koji pokazuje djelomičnu sličnost kao i cink i nikal. S druge strane, vidljivo je značajno odstupanje olova, kadmija i bakra, što može upućivati na činjenicu da su ova tri elementa pod dominantnim antropogenim utjecajem. Velik broj studija o koncentraciji Pb u tlu zabilježio je slične pojave (Khosravi, Ali i dr., 2018; Santos-Francés i dr., 2017; Ungureanu i dr., 2017). Koncentracija olova u tlu izravno je povezana s matičnim materijalom, posebice Al i Fe hidroksidima, Mn oksidima i mineralima gline, organskim materijalom, antropogenim izvorima Pb povezanim s prometom, rudarenjem metala i kanalizacijom (Salminen i dr., 2005.). Antropogeni izvori kadmija u tlo i podzemne vode su emisije nastale izgaranjem, kanalizacijski otpad, odlagališta otpada, promet, metalna industrija, rudarstvo i slično (Bigalke i dr., 2017; Merkel i Sperling, 1998; Mirlean i Roisenberg, 2006; Sprynskyy i dr., 2011). Čest razlog povišenih koncentracija kadmija u tlu i podzemnim vodama je uporaba fosfatnih gnojiva koja sadrže kadmij kao nečistoću. Ovaj put dodavanja Cd u podzemnu vodu istraživan je u Sjedinjenim Državama, Kanadi, Britaniji, Norveškoj, Švedskoj, Finskoj, Danskoj, Njemačkoj, Australiji i Novom Zelandu (Bigalke i dr., 2017; Grant, 2011; Taylor i dr., 2016).

Slika 16. Analiza glavnih komponenti teških metala i željeza u svrhu razlikovanja antropogenih i geogenih metala

9. ZAKLJUČAK

Ovim radom obuhvaćene su različite laboratorijske i analitičke metode u svrhu razlikovanja geogenih od antropogenih izvora onečišćenja tla potencijalno toksičnim elementima (PTE). Metode su uključivale analize, distribuciju, izračune geokemijskih faktora, statističku analizu i prostornu raspodjelu potencijalno toksičnih elemenata.

Analizom koncentracija elemenata utvrđeno je da pojedini elementi poput Cr i Cd pokazuju najveće vrijednosti. Prema Pravilniku o zaštiti poljoprivrednog zemljišta od onečišćenja (NN 71/2019), najveća odstupanja od maksimalno dozvoljenih koncentracija (MDK) primijećena su za Cr i Cd.

Ukoliko se uzmu u obzir sva tri analizirana geokemijska faktora (EF, Igeo i CF) za tlo istraživanog područja, rezultati upućuju da je Cr najvjerojatnije geogenog podrijetla, dok je kadmij antropogenog. Geogeno podrijetlo kroma je najvjerojatnije rezultat procesa trošenja bazičnih i ultrabazičnih magmatskih stijena i transporta aluvija iz istočnih Alpi. U slučaju kadmija, izvor se može povezati s agrokemikalijama jer je lokacija smještena na poljoprivrednom području.

Prostorna distribucija elemenata potvrđuje prethodne rezultate geokemijskih faktora posebice za Cr i Cd. Ovom analizom potvrđene su i anomalne pojave za olovo i bakar. Bakar se može povezati sa antropogenim unosom iz poljoprivrede, dok se olovo najvjerojatnije anomalno pojavljuje iz prometnica. Statistička analiza potvrđuje rezultate prostorne distribucije te potencijalno toksične elemente poput olova, kadmija i bakra svrstava u elemente s primarno antropogenim izvorom, dok se Cr nalazi prvenstveno vezan za geogene materijale.

Upotrebom svih korištenih metoda u ovome radu moguće je razlikovati geogene od antropogenih izvora potencijalno toksičnih metala u tlima ovakvog tipa. Nadalje, ovim radom utvrđeno je da pretjerana upotreba agrokemikalija može pridonijeti povećanim koncentracijama pojedinih potencijalno toksičnih metala.

10. ZAHVALE

Zahvaljujem se mentoru izv. prof. dr. sc. Stanku Ružičiću i komentoru dr.sc. Tomislavu Brenku na predloženoj temi te na svim savjetima, pomoći, strpljenju i trudu koje su mi ukazali prilikom izrade ovog rada.

Zahvaljujem se izv. prof. dr. sc. Marku Cvetkoviću na pomoći pri analizi ukupnog sadržaja ugljika (TC) i sadržaja ugljika iz organskih spojeva (TIC).

Zahvaljujem se obitelji i prijateljima na podršci, ohrabrenju i poticanju na izradu ovog rada.

11. LITERATURA

Alloway, B.J. (2005) Heavy Metals in Soils. Blackie Academic & Professional: London, UK 2nd ed., 368 str., ISBN 0-7514-0198-6.

Analytik Jena (2021) Operating Manual. Njemačka: A(01/2021).

Balderacchi M., Benoit P., Cambier P., Eklo O.M., Gargini A., Gemitzi A., Gurel M., Klöve B., Nakić Z., Preda E., Ružičić S., Wachniew P., Trevisan M. (2011) Groundwater pollution and quality monitoring approaches at European-level. Critical Reviews in Environment Science and Technology, 43, 323. https://doi.org/10.1080/10643389.2011.604259

Benhaddya M.L., Hadjel M., (2013) Spatial distribution and contamination assessment of heavy metals in surface soil of Hassi Messaoud Algeria. Environmental Earth Sciences, 71 (3), 1473-1486. https://doi.org/10.1007/s12665-013-2552-3

Bigalke M, Ulrich A, Rehmus A, Keller A. (2017) Accumulation of cadmium and uranium in arable soils in Switzerland. Environmental Pollution, 221, 85–93. https://doi.org/10.1016/j.envpol.2016.11.035

Bilandžija, D., Bašić, F., Kisić, I., Mesić, M., Zgorelec, Ž., Šestak, I., Perčin, A., Bogunović, I. (2017) Agroklimatski pokazatelji kao indikator klimatskih promjena na području Đurđevačkih pijesaka. Đurđevački pijesci - geneza, stanje i perspektive / Feletar, D., Tomić, F., Bašić, F., Peklić, I. (ur.). Đurđevac: Zavod za znanstveno istraživački rad Koprivničko križevačke županije, 2017, str. 9-9

Bonten L.T.C., Römkens P.F.A.M., Brus D.J. (2008) Contribution of heavy metal leaching from agricultural soils to surface water loads. Environment Forensics, 9, 252. https://doi.org/10.1080/15275920802122981

Brenko T., Borojević Šoštarić S., Ružičić S., Sekelj Ivančan T. (2020) Evidence for the formation of bog iron ore in soils of the Podravina region, NE Croatia: Geochemical and mineralogical study. Quaternary International, 536, 13–29. https://doi.org/10.1016/j.quaint.2019.11.033

Brenko, T., Borojević Šoštarić, S., Karavidović, T., Ružičić, S., Sekelj Ivančan, T. (2021) Geochemical and mineralogical correlations between the bog iron ores and roasted iron ores of the Podravina region, Croatia. Catena, 204, 105353. https://doi.org/10.1016/j.catena.2021.105353

41

Carek, D., Carek, M., Carek, V., Horvat, M. (2018) Elaborat zaštite okoliša za zahvat sustav odvodnje i pročišćavanja sanitarnih otpadnih voda naselja Sveta Ana i Mičetinac. Prostor EKO d.o.o., str. 106.

Comas-Cufí M, Thió-Henestrosa S. (2011) CoDaPack 2.0: a stand-alone, multi-platform compositional software. U Egozcue JJ, Tolosana-Delgado R, Ortego MI (eds) Proceedings of the 4th International Workshop on Compositional Data Analysis, Girona, Spain 2011, 11-13 May, 2011.

Duffus, J.H. (2002) "Heavy metals" – a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74/5, 793-807.

Feletar, D., Feletar, P., (2008) The Natural Basis as a Factor of the Inhabitation of the Upper Croatian Podravina Region. Podravina, 2, 167–212.

Genchi J., Carocci A., Lauria G., Sinicropi M.S., Catalano A. (2020) Nikel: Human Health and Enviromental Toxycology. International Journal of Enviromental Research and Public Health 2020, 17,679. https://doi.org/10.3390/ijerph17030679

Grant C.A. (2011) Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Pedologist, 3, 143–155. https://doi.org/10.18920/pedologist.54.3_143

Halamić J., Miko S. (ur.) (2009) Geokemijski atlas Republike Hrvatske. Hrvatski geološki institut, Zagreb, 87 str.

Husnjak, S. (2014.) Sistematika Tala Hrvatske. Hrvatska sveučilišna naklada, Zagreb, 373 str.

Izbicki, J.A., Ball, J.W., Bullen, T.D., Sutley, S.J. (2008) Chromium, chromium isotopes and selected traced elements, western Mojave Desert, USA. Applied Geochemistry, 23, 1325–1352. https://doi.org/10.1016/j.apgeochem.2007.11.015

Jiries, A.G., Hussein, H.H., Halash, Z. (2001) The quality of water and sediments of street runoff in Amman, Jordan. Hydrological Processes, 15, 815–824. https://doi.org/10.1002/hyp.186

Khosravi, Y., Ali, A. & Abadol Hossein, P. (2018) Assessment of spatial distribution pattern of heavy metals surrounding a lead and zinc production plant in Zanjan Province, Iran. Geoderma Regional, 12, 10–17. https://doi.org/10.1016/j.geodrs.2017.12.002

Lin, C.C.; Chen, S.J.; Huang, K.L.; Hwang, W.I.; Chang-Chien, G.P.; Lin, W.Y. (2005) Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science & Technology, 39, 8113–8122. https://doi.org/10.1021/es048182a

Loska K., Wiechula D., (2003) Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from rybnik reservoir. Chemosphere, 51, 723-733. https://doi.org/10.1016/S0045-6535(03)00187-5

Márton, E., Tischler, M., Csontos, L., Fügenschuh, B., Schmid, S.M. (2007) The contact zone between the ALCAPA and Tisza-Dacia mega-tectonic units of Northern Romania in the light of new paleomagnetic data. Swiss Journal of Geosciences 100, 109–124. https://doi.org/10.1007/s00015-007-1205-5

Merkel B.J., Sperling B. (1998) Hydrogeochemische Stoffsysteme Teil II, Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau e. V. Wirtschafts- und Verl.-Ges. Gas und Wasser, Bonn.

Mirlean N, Roisenberg A. (2006) The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil. Environmental Pollution, 143, 335–340. https://doi.org/10.1016/j.envpol.2005.11.022

Morrison, J.M., Goldhaber, M.B., Lee, L., Holloway, J.M., Wanty, R.B., Wolf, R.E., Ranville, J.F. (2009) A regional-scale study of chromium and nickel in soils of northern California, USA. Applied Geochemistry, 24, 1500–1511. https://doi.org/10.1016/j.apgeochem.2009.04.027

Morrison, J.M., Goldhaber, M.B., Mills, C.T., Breit, G.N., Hooper, R.L., Holloway, J.M., Diehl, S.F., Ranville, J.F. (2015) Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA. Applied Geochemistry, 61, 72–86. https://doi.org/10.1016/j.apgeochem.2015.05.018

Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja NN 71/2019.

Pekey, H., Karakas, D., Ayberk, S., Tolun, L., Bakoglu, M. (2004) Ecological risk assessment using trace elements from surface sediments of İzmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48(9–10), 946–953. https://doi.org/10.1016/j.marpolbul.2003.11.023 Raj K., Das A.P., (2023) Lead pollution: Impact on environment and human health and approach for sustainable solution. Environmental Chemistry and Ecotoxicology, 5, 79-85. https://doi.org/10.1016/j.enceco.2023.02.001

Rak, N. (2022) Sadržaj ugljika organskog podrijetla u srednjomiocenskim laporima na području Voćina. Diplomski rad, Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet, 24 str.

Ružičić S., Balaž I.B., Kovač Z., Filipović Č., Nakić Z., Kopić J., (2022) Nickel and Chromium Origin in Fluvisols od the Petruševec Well Field, Zagreb Aquifer. Enviroments, 9, 154. https://doi.org/10.3390/environments9120154

Ružičić S., Kovač, Z., Borovčak, T. (2019) Possible Influence of Agriculture on an Unsaturated Zone in Croatia. Polish Journal Of Environmental Studies, 28, 6, 4341-4349. https://doi.org/10.15244/pjoes/99305

Ružičić, S. (2013) Model transporta potencijalno toksičnih elemenata kroz nesaturiranu zonu na području regionalnoga vodocrpilišta Kosnica. Doktorska disertacija, 149 str. Rudarskogeološko-naftni fakultet, Sveučilište u Zagrebu.

Salminen, R., Batista, M., Bidovec, M. et al. (2005) FOREGS Geochemical Atlas of Europe, Part 1: Background information, geochemical atlas of Europe Part 2 Interpretation of geochemical maps, additional tables. Espoo: Gelogical Survey of Filand. 525 str.

Santos-Francés F, Martínez-Graña A, Zarza C.Á., Sánchez A.G., Rojo P.A. (2017) Spatial Distribution of Heavy Metals and the Environmental Quality of Soil in the Northern Plateau of Spain by Geostatistical Methods. International Journal of Environmental Research and Public Health. 26;14(6):568. https://doi.org/10.3390/ijerph14060568

Schipper P.N.M., Bonten L.T.C., Plette A.C.C., Moolenaar S.W. (2008) Measures to diminish leaching of heavy metals to surface waters from agricultural soils. Desalination, 226, 89-96. https://doi.org/10.1016/j.desal.2007.02.100

Sollitto, D., Romic, M., Castrignanò, A., Romic, D., Bakic, H. (2010) Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. Catena, 80, 182–194. https://doi.org/10.1016/j.catena.2009.11.005

Sprynskyy M, Kowalkowski T, Tutu H, Cozmuta LM, Cukrowska EM, Buszewski B. (2011) The adsorption properties of agricultural and forest soils towards heavy metal ions (Ni, Cu, Zn, and Cd). Soil and Sediment Contamination: An International Journal, 20, 12–29. https://doi.org/10.1080/15320383.2011.528467

Šušnjar J., (2020): Utjecaj antropogenih onečišćivala na tlo i podzemnu vodu područja Kalinovac-Hrastova Greda, Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet, diplomski rad

Taylor M, Kim N, Smidt G, Busby C, McNally S, Robinson B, Kratz S, Schnug E. (2016) Trace element contaminants and radioactivity from phosphate fertiliser. In: Schnug E, De Kok LJ (Eds.), Phosphorus in Agriculture: 100 % Zero. Springer, Dordrecht, pp. 231–266. https://doi.org/10.1007/978-94-017-7612-7_12

Tibljaš D. (2005): Determinativne metode u mineralogiji i petrologiji, Osnove elementne i fazne analize, skripta za kolegij Osnove elementne i fazne analize. Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Ungureanu, T., Iancu, G.O., Pintilei, M. & Chicoş, M.M. (2017) Spatial distribution and geochemistry of heavy metals in soils: a case study from the NE area of Vaslui county, Romania. Journal of Geochemical Exploration, 176, 20–32. https://doi.org/10.1016/j.gexplo.2016.08.012

Web izvori:

- 1. <u>http://www.pse.pbf.hr/hrvatski/elementi/cu/spojevi.html</u> (23.4.2023. 15:00 h)
- <u>http://www.pse.pbf.hr/hrvatski/elementi/zn/bioloski_podaci.html#BIOLOSKI</u> (23.04.2023. 15:05 h)

12. PRILOZI

Prilog 1. Fizikalno-kemijski parametri tla	Prilog 1.	Fizikalno-	kemijski	parametri	tla.
--	-----------	------------	----------	-----------	------

Ime	pH*	Glina*	Silt*	Pijesak*	тс
K-HG 1-1	4,32	23,17	76,68	0,12	1,36
K-HG 1-2	4,69	24,04	72	3,91	1,38
K-HG 1-3	4,05	25,31	73,59	1,1	1,33
K-HG 2-1	3,54	17,80	73,44	8,77	0,78
K-HG 2-2	3,85	21,17	74,35	4,5	1,18
K-HG 2-3	6,23	16,87	72,58	10,58	1,10
K-HG 3-1	3,91	21,33	75,26	3,42	1,26
K-HG 3-2	3,91	20,75	73,53	5,71	1,16
K-HG 3-3	4,32	21,52	70,8	7,68	1,85
K-HG 4-1	3,97	25,01	71,69	3,31	1,11
K-HG 4-2	4,17	20,22	73,13	6,66	1,37
K-HG 4-3	4,35	21,54	72,42	6,04	1,71
K-HG 4-4	3,96	21,10	75,54	3,37	1,36
K-HG 4-5	4,02	18,43	73,09	8,48	1,22
K-HG 5-1	5,20	23,03	69,82	7,16	1,68
K-HG 5-2	4,55	25,81	70,12	4,05	1,84
K-HG 5-3	3,80	22,65	74,62	2,73	1,03
K-HG 5-4	4,58	24,74	73,5	1,78	2,05
K-HG 5-5	4,13	16,60	49,65	33,77	1,53
K-HG 5-6	3,63	20,07	76,59	3,36	1,15
K-HG 5-7	3,94	22,49	74,95	2,55	1,09
K-HG 6-1	5,00	19,07	65,28	15,67	1,93
K-HG 6-2	3,66	10,22	49,81	39,96	0,86
K-HG 6-3	3,83	13,35	57,74	28,89	1,65
K-HG 6-4	4,52	15,83	73,19	10,96	2,05
K-HG 6-5	4,15	17,67	71,87	10,48	1,42
K-HG 6-6	3,64	9,70	62,74	27,56	0,78
K-HG 7-1	4,84	10,53	63,13	26,36	2,16
K-HG 7-2	3,60	12,38	64,8	22,82	0,48
K-HG 7-3	4,23	18,53	73,04	8,44	1,51
K-HG 7-4	4,44	13,96	72,96	13,09	1,99
K-HG 7-5	3,80	12,40	67,06	20,52	1,55
K-HG 7-6	3,61	16,61	67,59	15,84	1,02
K-HG 8-1	4,46	14,90	66,67	18,42	1,60
K-HG 8-2	3,57	16,23	70,34	13,45	0,70
K-HG 8-3	4,20	15,64	55,43	28,95	1,91
K-HG 8-4	4,48	13,30	08,80	17,87	1,48
K-HG 8-5	4,10	14,17	59,0	20,22	1,49
К-ПС 0-0	4,51	11,19	04,74	24,09	0,40
К-ПС 9-1	4,10	14,99	77.02	7,70	1,00
К-НС 0.3	4,30	18.74	75.65	5,50	1,51
К-НС 9.4	4,11	18.43	71.49	10.06	1,13
K-HG 9-5	3.90	20.84	72.93	6.2	0.82
K-HG 9-6	4 71	19.15	73.63	7.23	1.62
K-HG 10-1	4.26	15.84	77.78	6.38	1,02
K-HG 10-2	4.15	18,94	74.72	6.34	1,13
K-HG 10-3	4,30	17.48	68.51	14.02	2.01
K-HG 10-4	3,81	16.67	67.92	15,41	0,84
K-HG 10-5	3,68	17,83	71,23	10,95	1,10
K-HG 11-1	5,01	22,68	69,67	7,65	3,11
K-HG 11-2	4,72	19,68	69,47	10,83	2,18
K-HG 11-3	3,86	12,58	65,48	21,93	0,52
K-HG 11-4	3,80	14,30	67,42	18,26	0,78
K-HG 11-5	4,05	16,05	73,4	10,55	0,98
K-HG 12-1	4,78	14,65	71,1	14,23	3,35

* - preuzeto iz Ružičić i dr. (2023; u postupku recenzije)

Ime	Cr_EF	Obogaćenje Cr	Ni_EF	Obogaćenje Ni	Cu_EF	Obogaćenje Cu
K-HG 1-1	3,9632	Umjereno	0,9202	Slabo do minimalno	0,6148	Slabo do minimalno
K-HG 1-2	1,5562	Slabo do minimalno	0,5115	Slabo do minimalno	0,3190	Slabo do minimalno
K-HG 1-3	3,8253	Umjereno	0,8961	Slabo do minimalno	0,4754	Slabo do minimalno
K-HG 2-1	3,9362	Umjereno	0,9517	Slabo do minimalno	0,5563	Slabo do minimalno
K-HG 2-2	3,0041	Umjereno	0,7928	Slabo do minimalno	0,5073	Slabo do minimalno
K-HG 2-3	2,8783	Umjereno	0,7315	Slabo do minimalno	0,4534	Slabo do minimalno
K-HG 3-1	3,8809	Umjereno	0,9199	Slabo do minimalno	0,6868	Slabo do minimalno
K-HG 3-2	1,8986	Slabo do minimalno	0,5872	Slabo do minimalno	0,3319	Slabo do minimalno
K-HG 3-3	2,0354	Umjereno	0,6566	Slabo do minimalno	0,4117	Slabo do minimalno
K-HG 4-1	1,7308	Slabo do minimalno	0,6385	Slabo do minimalno	0,3493	Slabo do minimalno
K-HG 4-2	0,6483	Slabo do minimalno	0,2794	Slabo do minimalno	0,2102	Slabo do minimalno
K-HG 4-3	1,1035	Slabo do minimalno	0,4530	Slabo do minimalno	0,3152	Slabo do minimalno
K-HG 4-4	2,8226	Umjereno	0,7257	Slabo do minimalno	0,5129	Slabo do minimalno
K-HG 4-5	2,3419	Umjereno	0,5945	Slabo do minimalno	0,4106	Slabo do minimalno
K-HG 5-1	1,1267	Slabo do minimalno	0,4393	Slabo do minimalno	0,3186	Slabo do minimalno
K-HG 5-2	1,4533	Slabo do minimalno	0,4886	Slabo do minimalno	0,3392	Slabo do minimalno
K-HG 5-3	1,4383	Slabo do minimalno	0,5502	Slabo do minimalno	0,3799	Slabo do minimalno
K-HG 5-4	0,8464	Slabo do minimalno	0,5163	Slabo do minimalno	0,3682	Slabo do minimalno
K-HG 5-5	1,1042	Slabo do minimalno	0,5520	Slabo do minimalno	0,3368	Slabo do minimalno
K-HG 5-6	3,5344	Umjereno	0,8318	Slabo do minimalno	0,4004	Slabo do minimalno
K-HG 5-7	1,4213	Slabo do minimalno	0,6497	Slabo do minimalno	0,3968	Slabo do minimalno
K-HG 6-1	0,8737	Slabo do minimalno	0,3879	Slabo do minimalno	0,2622	Slabo do minimalno
K-HG 6-2	3,7223	Umjereno	0,9403	Slabo do minimalno	0,6143	Slabo do minimalno
K-HG 6-3	2,0894	Umjereno	0,6566	Slabo do minimalno	0,4075	Slabo do minimalno
K-HG 6-4	1,5756	Slabo do minimalno	0,6465	Slabo do minimalno	0,4834	Slabo do minimalno
K-HG 6-5	1,2/3/	Slabo do minimalno	0,5513	Slabo do minimalno	0,0000	Slabo do minimalno
K-HG 0-0	4,2580	Umjereno	1,0157	Slabo do minimalno	0,6203	Slabo do minimalno
K-HG 7-1	0,7411	Slabo do minimalno	0,4255	Slabo do minimalno	0,2756	Slabo do minimalno
K-HG 7-2	4,0289	Umjereno	0,7947	Slabo do minimalno	0,0278	Slabo do minimalno
K-HG 7-3	2,3470	Slabo do minimalno	0,6301	Slabo do minimalno	0,4700	Slabo do minimalno
K-HC 7-5	1,0433	Umiereno	0,0090	Slabo do minimalno	0,4233	Slabo do minimalno
K-HG 7-6	2 6571	Umjereno	0.6359	Slabo do minimalno	0.4032	Slabo do minimalno
K-HG 8-1	1,0000	Slabo do minimalno	0,5205	Slabo do minimalno	0.3987	Slabo do minimalno
K-HG 8-2	3,9297	Umiereno	0,8885	Slabo do minimalno	0,3907	Slabo do minimalno
K-HG 8-3	1.7641	Slabo do minimalno	0.4194	Slabo do minimalno	0.2939	Slabo do minimalno
K-HG 8-4	1,4008	Slabo do minimalno	0.4070	Slabo do minimalno	0.2898	Slabo do minimalno
K-HG 8-5	0.8193	Slabo do minimalno	0.3453	Slabo do minimalno	0.2750	Slabo do minimalno
K-HG 8-6	4,9076	Umjereno	0,9968	Slabo do minimalno	0,7898	Slabo do minimalno
K-HG 9-1	0,6698	Slabo do minimalno	0,4589	Slabo do minimalno	0,2782	Slabo do minimalno
K-HG 9-2	1,0899	Slabo do minimalno	0,5506	Slabo do minimalno	0,2276	Slabo do minimalno
K-HG 9-3	1,2041	Slabo do minimalno	0,4640	Slabo do minimalno	0,2433	Slabo do minimalno
K-HG 9-4	0,5833	Slabo do minimalno	0,3094	Slabo do minimalno	0,2326	Slabo do minimalno
K-HG 9-5	4,4435	Umjereno	0,5045	Slabo do minimalno	0,1314	Slabo do minimalno
K-HG 9-6	0,3282	Slabo do minimalno	0,2365	Slabo do minimalno	0,1345	Slabo do minimalno
K-HG 10-1	1,5298	Slabo do minimalno	0,5429	Slabo do minimalno	0,1693	Slabo do minimalno
K-HG 10-2	1,0383	Slabo do minimalno	0,5173	Slabo do minimalno	0,3629	Slabo do minimalno
K-HG 10-3	1,3595	Slabo do minimalno	0,3604	Slabo do minimalno	0,2442	Slabo do minimalno
K-HG 10-4	4,2674	Umjereno	1,0688	Slabo do minimalno	0,5568	Slabo do minimalno
K-HG 10-5	4,0330	Umjereno	1,0022	Slabo do minimalno	0,5650	Slabo do minimalno
K-HG 11-1	1,4277	Slabo do minimalno	0,3995	Slabo do minimalno	0,3804	Slabo do minimalno
K-HG 11-2	0,7506	Slabo do minimalno	0,3378	Slabo do minimalno	0,1060	Slabo do minimalno
K-HG 11-3	4,2466	Umjereno	0,9132	Slabo do minimalno	0,5055	Slabo do minimalno
K-HG 11-4	4,4831	Umjereno	0,9738	Slabo do minimalno	0,5417	Slabo do minimalno
K-HG 11-5	2,5227	Slabo do minimalno	0,5946	Slabo do minimalno	0,3368	Slabo do minimalno
K-HG 12-1	0./352	I Siapo do minimalho	1 0.5028	siano do minimalno	± 0.2775	 Siapo do minimalno

Prilog 2. Faktora	1 obogaćenja	i kategorija	stanja tla za	Cr, Ni,	Cu, Zn,	Cd i Pb.
-------------------	--------------	--------------	---------------	---------	---------	----------

Prilog 2. na	stavak
--------------	--------

Ime	Zn_EF	Obogaćenje_Zn	Cd_EF	Obogaćenje_Cd	Pb_EF	Obogaćenje_Pb
K-HG 1-1	0,6159	Slabo do minimalno	8,197	Značajno	1,1345	Slabo do minimalno
K-HG 1-2	0,2616	Slabo do minimalno	15,750	Značajno	0,3442	Slabo do minimalno
K-HG 1-3	0,5728	Slabo do minimalno	21,702	Vrlo visoko	0,9144	Slabo do minimalno
K-HG 2-1	0,7652	Slabo do minimalno	22,275	Vrlo visoko	0,9900	Slabo do minimalno
K-HG 2-2	0,4614	Slabo do minimalno	11,350	Značajno	0,7555	Slabo do minimalno
K-HG 2-3	0,5266	Slabo do minimalno	16,444	Značajno	0,8921	Slabo do minimalno
K-HG 3-1	0,7153	Slabo do minimalno	28,680	Vrlo visoko	1,0292	Slabo do minimalno
K-HG 3-2	0,3697	Slabo do minimalno	19,502	Značajno	0,4868	Slabo do minimalno
K-HG 3-3	0,4284	Slabo do minimalno	8,256	Značajno	0,6160	Slabo do minimalno
K-HG 4-1	0,4395	Slabo do minimalno	6,631	Značajno	0,6048	Slabo do minimalno
K-HG 4-2	0,2524	Slabo do minimalno	8,491	Značajno	0,2015	Slabo do minimalno
K-HG 4-3	0,2862	Slabo do minimalno	5,180	Značajno	0,2832	Slabo do minimalno
K-HG 4-4	0,5337	Slabo do minimalno	8,975	Značajno	0,7802	Slabo do minimalno
K-HG 4-5	0,3909	Slabo do minimalno	16,301	Značajno	0,5848	Slabo do minimalno
K-HG 5-1	0,3433	Slabo do minimalno	15,544	Značajno	0,3174	Slabo do minimalno
K-HG 5-2	0,3692	Slabo do minimalno	12,772	Značajno	0,4472	Slabo do minimalno
K-HG 5-3	0,4242	Slabo do minimalno	6,104	Značajno	0,7031	Slabo do minimalno
K-HG 5-4	0,4002	Slabo do minimalno	7,732	Značajno	0,4980	Slabo do minimalno
K-HG 5-5	0,4578	Slabo do minimalno	19,962	Znacajno	0,7118	Slabo do minimalno
K-HG 5-6	0,5757	Slabo do minimalno	18,686	Znacajno	0,9354	Slabo do minimalno
K-HG 5-7	0,3816	Slabo do minimalno	8,681	Znacajno	0,4954	Slabo do minimalno
K-HG 0-1	0,3070	Slabo do minimalno	8,018	Znacajno	0,2030	Slabo do minimalno
K-HG 0-2 K HC 6 2	0,0997	Slabo do minimalno	16 282	Vrio visoko Značajno	0,8090	Slabo do minimalno
K-HG 0-3	0,5352	Slabo do minimalno	11,020	Značajno	0,7333	Slabo do minimalno
K-HC 6-5	0,3294	Slabo do minimalno	11,930	Umiereno	0,9316	Slabo do minimalno
K-HC 6-6	0,5555	Slabo do minimalno	5 583	Značajno	0,3010	Slabo do minimalno
K-HC 7-1	0.3847	Slabo do minimalno	13 458	Značajno	0.3957	Slabo do minimalno
K-HG 7-2	0,5847	Slabo do minimalno	31.075	Vrlo visoko	0,3737	Slabo do minimalno
K-HG 7-3	0.4423	Slabo do minimalno	10.662	Značajno	0 5672	Slabo do minimalno
K-HG 7-4	0.4256	Slabo do minimalno	11.262	Značajno	0.5327	Slabo do minimalno
K-HG 7-5	0.6037	Slabo do minimalno	0.000	Slabo	0.9328	Slabo do minimalno
K-HG 7-6	0,5003	Slabo do minimalno	14,743	Značajno	0,6925	Slabo do minimalno
K-HG 8-1	0,4608	Slabo do minimalno	9,514	Značajno	0,5277	Slabo do minimalno
K-HG 8-2	0,7254	Slabo do minimalno	0,000	Slabo	0,8122	Slabo do minimalno
K-HG 8-3	0,2901	Slabo do minimalno	9,439	Značajno	0,3099	Slabo do minimalno
K-HG 8-4	0,2785	Slabo do minimalno	6,737	Značajno	0,2841	Slabo do minimalno
K-HG 8-5	0,3122	Slabo do minimalno	10,909	Značajno	0,2741	Slabo do minimalno
K-HG 8-6	0,6018	Slabo do minimalno	11,360	Značajno	0,7816	Slabo do minimalno
K-HG 9-1	0,4823	Slabo do minimalno	16,829	Značajno	0,3836	Slabo do minimalno
K-HG 9-2	0,3625	Slabo do minimalno	8,779	Značajno	0,5462	Slabo do minimalno
K-HG 9-3	0,2995	Slabo do minimalno	9,825	Značajno	0,4213	Slabo do minimalno
K-HG 9-4	0,1928	Slabo do minimalno	13,097	Značajno	0	Slabo do minimalno
K-HG 9-5	0,5626	Slabo do minimalno	9,200	Značajno	0,6992	Slabo do minimalno
K-HG 9-6	0,1690	Slabo do minimalno	10,760	Značajno	0	Slabo do minimalno
K-HG 10-1	0,3353	Slabo do minimalno	6,716	Značajno	0,3540	Slabo do minimalno
K-HG 10-2	0,3079	Slabo do minimalno	7,938	Značajno	0,4255	Slabo do minimalno
K-HG 10-3	0,2764	Slabo do minimalno	3,663	Umjereno	0,2931	Slabo do minimalno
K-HG 10-4	0,6848	Slabo do minimalno	4,331	Umjereno	1,8450	Slabo do minimalno
K-HG 10-5	0,7580	Slabo do minimalno	9,709	Znacajno	0,9579	Slabo do minimalno
K-HG 11-1	0,3417	Slabo do minimalno	2,199	Umjereno	0,4016	Slabo do minimalno
K-HG 11-2	0,5508	Slabo do minimalno	9,491	Znacajno Velo vicolec	0,2461	Slabo do minimalno
K-HG 11-3	0.7627	Siabo do minimalno	5 460	v fio Visoko	0,7078	Siabo do minimalno
K-IIG 11-4	0,7027	Siabo do minimalno	5,409	Značajno	0.5222	Sidoo do minimalno
K-HC 12 1	0,4705	Siabo do minimalno	14 854	Značajno	0,5555	Slabo do minimalno
K-110 12-1	1 0,2333	Jiano do minimanio	14,004	Lilacajiiu	0,1232	Siabo uo minimanio

Ime	Igeo_Cr	Cr_kategorija	Igeo_Ni	Ni_kategorija	Igeo_Zn	Zn_kategorij	Igeo_Cd	Cd_kategorija	Igeo_Pb	Pb_kategorija	Igeo_Cu	Cu_kategorija
						а						
K-HG 1-1	1,688	Umjereno zagađeno	-0,418	Nezagađeno	-0,997	Nezagađeno	2,737	Umjereno do jako zagađeno	-0,116	Nezagađeno	-1,000	Nezagađeno
K-HG 1-2	1,755	Umjereno zagađeno	0,150	Nezagađeno do umjereno zagađeno	-0,817	Nezagađeno	5,095	Izrazito zagađeno	-0,421	Nezagađeno	-0,531	Nezagađeno
K-HG 1-3	1,818	Umjereno zagađeno	-0,276	Nezagađeno	-0,922	Nezagađeno	4,322	Jako do izrazito zagađeno	-0,247	Nezagađeno	-1,191	Nezagađeno
K-HG 2-1	1,406	Umjereno zagađeno	-0,642	Nezagađeno	-0,956	Nezagađeno	3,907	Jako zagađeno	-0,585	Nezagađeno	-1,417	Nezagađeno
K-HG 2-2	1,726	Umjereno zagađeno	-0,196	Nezagađeno	-0,977	Nezagađeno	3,644	Jako zagađeno	-0,265	Nezagađeno	-0,840	Nezagađeno
K-HG 2-3	1,615	Umjereno zagađeno	-0,361	Nezagađeno	-0,836	Nezagađeno	4,129	Jako do izrazito zagađeno	-0,075	Nezagađeno	-1,051	Nezagađeno
K-HG 3-1	1,659	Umjereno zagađeno	-0,418	Nezagađeno	-0,781	Nezagađeno	4,544	Jako do izrazito zagađeno	-0,256	Nezagađeno	-0,840	Nezagađeno
K-HG 3-2	1,283	Umjereno zagađeno	-0,410	Nezagađeno	-1,077	Nezagađeno	4,644	Jako do izrazito zagađeno	-0,680	Nezagađeno	-1,233	Nezagađeno
К-НС 3-3	1,591	Umjereno zagađeno	-0,041	Nezagađeno	-0,657	Nezagađeno	3,611	Jako zagađeno	-0,133	Nezagađeno	-0,714	Nezagađeno
K-HG 4-1	1,214	Umjereno zagađeno	-0,224	Nezagađeno	-0,763	Nezagađeno	3,152	Jako zagađeno	-0,303	Nezagađeno	-1,095	Nezagađeno
K-HG 4-2	0,611	Nezagađeno do umjereno zagađeno	-0,604	Nezagađeno	-0,750	Nezagađeno	4,322	Jako do izrazito zagađeno	-1,075	Nezagađeno	-1,014	Nezagađeno
K-HG 4-3	1,354	Umjereno zagađeno	0,070	Nezagađeno do umjereno zagađeno	-0,593	Nezagađeno	3,585	Jako zagađeno	-0,608	Nezagađeno	-0,454	Nezagađeno
K-HG 4-4	1,653	Umjereno zagađeno	-0,306	Nezagađeno	-0,750	Nezagađeno	3,322	Jako zagađeno	-0,202	Nezagađeno	-0,807	Nezagađeno
K-HG 4-5	1,601	Umjereno zagađeno	-0,377	Nezagađeno	-0,982	Nezagađeno	4,400	Jako do izrazito zagađeno	-0,401	Nezagađeno	-0,911	Nezagađeno
K-HG 5-1	1,343	Umjereno zagađeno	-0,016	Nezagađeno	-0,372	Nezagađeno	5,129	Izrazito zagađeno	-0,485	Nezagađeno	-0,479	Nezagađeno
K-HG 5-2	1,104	Umjereno zagađeno	-0,469	Nezagađeno	-0,873	Nezagađeno	4,239	Jako do izrazito zagađeno	-0,597	Nezagađeno	-0,995	Nezagađeno
K-HG 5-3	0,874	Nezagađeno do umjereno zagađeno	-0,512	Nezagađeno	-0,888	Nezagađeno	2,959	Umjereno do jako zagađeno	-0,158	Nezagađeno	-1,047	Nezagađeno
K-HG 5-4	0,546	Nezagađeno do umjereno zagađeno	-0,168	Nezagađeno	-0,535	Nezagađeno	3,737	Jako zagađeno	-0,220	Nezagađeno	-0,655	Nezagađeno
K-HG 5-5	0,368	Nezagađeno do umjereno zagađeno	-0,632	Nezagađeno	-0,902	Nezagađeno	4,544	Jako do izrazito zagađeno	-0,265	Nezagađeno	-1,345	Nezagađeno
K-HG 5-6	1,557	Umjereno zagađeno	-0,530	Nezagađeno	-1,061	Nezagađeno	3,959	Jako zagađeno	-0,361	Nezagađeno	-1,585	Nezagađeno

Prilog 3. Indeks geoakumulacije i kategorija stanja tla za Cr, Ni, Cu, Zn, Cd i Pb.

K-HG 5-7	0,711	Nezagađeno do umiereno zagađeno	-0,418	Nezagađeno	-1,186	Nezagađeno	3,322	Jako zagađeno	-0,809	Nezagađeno	-1,129	Nezagađeno
K-HG 6-1	1,124	Umjereno zagađeno	-0,047	Nezagađeno	-0,385	Nezagađeno	4,322	Jako do izrazito zagađeno	-0,608	Nezagađeno	-0,613	Nezagađeno
K-HG 6-2	1,455	Umjereno zagađeno	-0,530	Nezagađeno	-0,956	Nezagađeno	4,544	Jako do izrazito zagađeno	-0,644	Nezagađeno	-1,144	Nezagađeno
K-HG 6-3	1,268	Umjereno zagađeno	-0,402	Nezagađeno	-0,649	Nezagađeno	4,239	Jako do izrazito zagađeno	-0,238	Nezagađeno	-1,090	Nezagađeno
K-HG 6-4	0,691	Nezagađeno do umjereno zagađeno	-0,594	Nezagađeno	-0,883	Nezagađeno	3,611	Jako zagađeno	-0,067	Nezagađeno	-1,014	Nezagađeno
K-HG 6-5	0,466	Nezagađeno do umjereno zagađeno	-0,742	Nezagađeno	-1,375	Nezagađeno	2,322	Umjereno do jako zagađeno	-0,878	Nezagađeno	0,000	Nezagađeno
K-HG 6-6	1,346	Umjereno zagađeno	-0,722	Nezagađeno	-1,328	Nezagađeno	1,737	Nezagađeno do umjereno zagađeno	-1,124	Nezagađeno	-1,433	Nezagađeno
K-HG 7-1	0,554	Nezagađeno do umjereno zagađeno	-0,246	Nezagađeno	-0,392	Nezagađeno	4,737	Jako do izrazito zagađeno	-0,351	Nezagađeno	-0,873	Nezagađeno
K-HG 7-2	1,249	Umjereno zagađeno	-1,093	Nezagađeno	-1,402	Nezagađeno	4,196	Jako do izrazito zagađeno	-1,075	Nezagađeno	-1,433	Nezagađeno
K-HG 7-3	1,672	Umjereno zagađeno	-0,299	Nezagađeno	-0,854	Nezagađeno	3,737	Jako zagađeno	-0,495	Nezagađeno	-0,748	Nezagađeno
K-HG 7-4	0,829	Nezagađeno do umjereno zagađeno	0,052	Nezagađeno do umjereno zagađeno	-0,465	Nezagađeno	4,261	Jako do izrazito zagađeno	-0,141	Nezagađeno	-0,466	Nezagađeno
K-HG 7-5	1,135	Umjereno zagađeno	-1,102	Nezagađeno	-1,609	Nezagađeno	0,000		-0,981	Nezagađeno	0,000	Nezagađeno
K-HG 7-6	1,487	Umjereno zagađeno	-0,576	Nezagađeno	-0,922	Nezagađeno	3,959	Jako zagađeno	-0,453	Nezagađeno	-1,233	Nezagađeno
K-HG 8-1	0,394	Nezagađeno do umjereno zagađeno	-0,548	Nezagađeno	-0,724	Nezagađeno	3,644	Jako zagađeno	-0,528	Nezagađeno	-0,933	Nezagađeno
K-HG 8-2	1,382	Umjereno zagađeno	-0,763	Nezagađeno	-1,056	Nezagađeno	0,000		-0,893	Nezagađeno	-1,103	Nezagađeno
K-HG 8-3	1,841	Umjereno zagađeno	-0,232	Nezagađeno	-0,763	Nezagađeno	4,261	Jako do izrazito zagađeno	-0,668	Nezagađeno	-0,745	Nezagađeno
K-HG 8-4	1,559	Umjereno zagađeno	-0,224	Nezagađeno	-0,772	Nezagađeno	3,824	Jako zagađeno	-0,743	Nezagađeno	-0,714	Nezagađeno
K-HG 8-5	0,505	Nezagađeno do umjereno zagađeno	-0,742	Nezagađeno	-0,888	Nezagađeno	4,239	Jako do izrazito zagađeno	-1,075	Nezagađeno	-1,070	Nezagađeno
K-HG 8-6	1,526	Umjereno zagađeno	-0,774	Nezagađeno	-1,502	Nezagađeno	2,737	Umjereno do jako zagađeno	-1,124	Nezagađeno	-1,109	Nezagađeno
K-HG 9-1	0,492	Nezagađeno do umjereno zagađeno	-0,054	Nezagađeno	0,018	Nezagađeno do umjereno zagađeno	5,143	Izrazito zagađeno	-0,312	Nezagađeno	-0,776	Nezagađeno
K-HG 9-2	0,575	Nezagađeno do umjereno zagađeno	-0,410	Nezagađeno	-1,013	Nezagađeno	3,585	Jako zagađeno	-0,421	Nezagađeno	-1,684	Nezagađeno
K-HG 9-3	1,030	Umjereno zagađeno	-0,345	Nezagađeno	-0,977	Nezagađeno	4,059	Jako do izrazito zagađeno	-0,485	Nezagađeno	-1,277	Nezagađeno
K-HG 9-4	1,136	Umjereno zagađeno	0,221	Nezagađeno do umjereno zagađeno	-0,462	Nezagađeno	5,624	Izrazito zagađeno	0,000	Nezagađeno	-0,191	Nezagađeno

K-HG 9-5	1,365	Umjereno zagađeno	-1,774	Nezagađeno	-1,616	Nezagađeno	2,415	Umjereno do jako zagađeno	-1,303	Nezagađeno	-3,714	Nezagađeno
K-HG 9-6	0,380	Nezagađeno do umjereno zagađeno	-0,093	Nezagađeno	-0,577	Nezagađeno	5,415	Izrazito zagađeno	0,000	Nezagađeno	-0,907	Nezagađeno
K-HG 10-1	1,368	Umjereno zagađeno	-0,126	Nezagađeno	-0,822	Nezagađeno	3,503	Jako zagađeno	-0,743	Nezagađeno	-1,807	Nezagađeno
K-HG 10-2	0,802	Nezagađeno do umjereno zagađeno	-0,203	Nezagađeno	-0,951	Nezagađeno	3,737	Jako zagađeno	-0,485	Nezagađeno	-0,714	Nezagađeno
K-HG 10-3	1,570	Umjereno zagađeno	-0,345	Nezagađeno	-0,728	Nezagađeno	3,000	Umjereno do jako zagađeno	-0,644	Nezagađeno	-0,907	Nezagađeno
K-HG 10-4	1,394	Umjereno zagađeno	-0,604	Nezagađeno	-1,246	Nezagađeno	1,415	Nezagađeno do umjereno zagađeno	0,184	Nezagađeno do umjereno zagađeno	-1,544	Nezagađeno
K-HG 10-5	1,318	Umjereno zagađeno	-0,691	Nezagađeno	-1,094	Nezagađeno	2,585	Umjereno do jako zagađeno	-0,756	Nezagađeno	-1,518	Nezagađeno
K-HG 11-1	1,377	Umjereno zagađeno	-0,460	Nezagađeno	-0,686	Nezagađeno	2,000	Umjereno do jako zagađeno	-0,453	Nezagađeno	-0,531	Nezagađeno
K-HG 11-2	0,612	Nezagađeno do umjereno zagađeno	-0,539	Nezagađeno	-0,569	Nezagađeno	4,273	Jako do izrazito zagađeno	-0,996	Nezagađeno	-2,212	Nezagađeno
K-HG 11-3	1,526	Umjereno zagađeno	-0,691	Nezagađeno	-1,277	Nezagađeno	3,939	Jako zagađeno	-1,059	Nezagađeno	-1,544	Nezagađeno
K-HG 11-4	1,450	Umjereno zagađeno	-0,753	Nezagađeno	-1,105	Nezagađeno	1,737	Nezagađeno do umjereno zagađeno	-0,878	Nezagađeno	-1,599	Nezagađeno
K-HG 11-5	1,537	Umjereno zagađeno	-0,548	Nezagađeno	-0,868	Nezagađeno	3,000	Umjereno do jako zagađeno	-0,705	Nezagađeno	-1,368	Nezagađeno
K-HG 12-1	1,307	Umjereno zagađeno	0,028	Nezagađeno do umjereno zagađeno	-0,335	Nezagađeno	5,644	Izrazito zagađeno	-1,247	Nezagađeno	-0,100	Nezagađeno

Ime	Cr (mg/kg)	CF Cr	Ni (mg/kg)	CF Ni	Cu(mg/kg)	CF Cu
K-HG 1-1	4.8347	Značaino	1.1226	Umiereno	0.7500	Neonečišćeno
K-HG1-2	5.0640	Značajno	1,6645	Umiereno	1.0381	Umiereno
K-HG1-3	5,2880	Značajno	1.2387	Umiereno	0.6571	Neonečišćeno
K-HG2-1	3,9760	Značajno	0,9613	Neonečišćeno	0,5619	Neonečišćeno
K-HG2-2	4,9627	Značajno	1,3097	Umjereno	0,8381	Neonečišćeno
K-HG2-3	4,5947	Značajno	1,1677	Umjereno	0,7238	Neonečišćeno
K-HG3-1	4,7360	Značajno	1,1226	Umjereno	0,8381	Neonečišćeno
K-HG3-2	3,6507	Značajno	1,1290	Umjereno	0,6381	Neonečišćeno
K-HG3-3	4,5200	Značajno	1,4581	Umjereno	0,9143	Neonečišćeno
K-HG4-1	3,4800	Značajno	1,2839	Umjereno	0,7024	Neonečišćeno
K-HG4-2	2,2907	Umjereno	0,9871	Neonečišćeno	0,7429	Neonečišćeno
K-HG4-3	3,8347	Značajno	1,5742	Umjereno	1,0952	Umjereno
K-HG4-4	4,7173	Značajno	1,2129	Umjereno	0,8571	Neonečišćeno
K-HG4-5	4,5493	Značajno	1,1548	Umjereno	0,7976	Neonečišćeno
K-HG5-1	3,8053	Značajno	1,4839	Umjereno	1,0762	Umjereno
K-HG5-2	3,2240	Značajno	1,0839	Umjereno	0,7524	Neonečišćeno
K-HG5-3	2,7493	Umjereno	1,0516	Umjereno	0,7262	Neonečišćeno
K-HG5-4	2,1893	Umjereno	1,3355	Umjereno	0,9524	Neonečišćeno
K-HG5-5	1,9360	Umjereno	0,9677	Neonečišćeno	0,5905	Neonečišćeno
K-HG5-6	4,4133	Značajno	1,0387	Umjereno	0,5000	Neonečišćeno
K-HG5-7	2,4560	Umjereno	1,1226	Umjereno	0,6857	Neonečišćeno
K-HG6-1	3,2693	Značajno	1,4516	Umjereno	0,9810	Neonečišćeno
K-HG6-2	4,1120	Značajno	1,0387	Umjereno	0,6786	Neonečišćeno
K-HG6-3	3,6133	Značajno	1,1355	Umjereno	0,7048	Neonečišćeno
K-HG6-4	2,4213	Umjereno	0,9935	Neonečišćeno	0,7429	Neonečišćeno
K-HG6-5	2,0720	Umjereno	0,8968	Neonečišćeno	0	Neonečišćeno
K-HG6-6	3,8133	Značajno	0,9097	Neonečišćeno	0,5556	Neonečišćeno
K-HG7-1	2,2027	Umjereno	1,2645	Umjereno	0,8190	Neonečišćeno
K-HG7-2	3,5653	Značajno	0,7032	Neonečišćeno	0,5556	Neonečišćeno
K-HG7-3	4,7787	Značajno	1,2194	Umjereno	0,8929	Neonecisceno
K-HG/-4	2,6640	Umjereno	1,5548	Umjereno	1,0857	Umjereno
K-HG/-5	3,2933	Značajno	0,0989	I lucience a	0 (291	Neonecisceno
K-HG/-0	4,2055	Značajno	1,0005	Umjereno	0,0381	Neonecisceno
К-ПС0-1	3,0003	Značajno	1,0238	Neonečišćeno	0,7837	Neonečišćeno
K-HC8-3	5 3733	Značajno	1 2774	Umiereno	0,0984	Neonečišćeno
K-HC8-4	4 4187	Značajno	1,2774	Umjereno	0,8932	Neonečišćeno
K-HG8-5	2 1280	Umiereno	0.8968	Neonečišćeno	0,7143	Neonečišćeno
K-HG8-6	4 3200	Značajno	0,8700	Neonečišćeno	0,7143	Neonečišćeno
K-HG 9-1	2,1093	Umiereno	1 4452	Umiereno	0,8762	Neonečišćeno
K-HG 9-2	2,2347	Umiereno	1,132	Umiereno	0.4667	Neonečišćeno
K-HG 9-3	3.0640	Značaino	1,1200	Umiereno	0,6190	Neonečišćeno
K-HG 9-4	3.2960	Značajno	1,7484	Umiereno	1.3143	Umiereno
K-HG 9-5	3.8640	Značajno	0.4387	Neonečišćeno	0.1143	Neonečišćeno
K-HG 9-6	1.9520	Umiereno	1.4065	Umiereno	0.8000	Neonečišćeno
K-HG 10-1	3,8720	Značajno	1,3742	Umjereno	0,4286	Neonečišćeno
K-HG 10-2	2,6160	Umjereno	1,3032	Umjereno	0,9143	Neonečišćeno
K-HG 10-3	4,4533	Značajno	1,1806	Umjereno	0,8000	Neonečišćeno
K-HG 10-4	3,9413	Značajno	0,9871	Neonečišćeno	0,5143	Neonečišćeno
K-HG 10-5	3,7387	Značajno	0,9290	Neonečišćeno	0,5238	Neonečišćeno
K-HG 11-1	3,8960	Značajno	1,0903	Umjereno	1,0381	Umjereno
K-HG 11-2	2,2933	Umjereno	1,0323	Umjereno	0,3238	Neonečišćeno
K-HG 11-3	4,3200	Značajno	0,9290	Neonečišćeno	0,5143	Neonečišćeno
K-HG 11-4	4,0987	Značajno	0,8903	Neonečišćeno	0,4952	Neonečišćeno
K-HG 11-5	4,3520	Značajno	1,0258	Umjereno	0,5810	Neonečišćeno
K-HG 12-1	3,7120	Značajno	1,5290	Umjereno	1,4000	Umjereno

Prilog 4. Faktora onečišćenja i kategorija stanja tla za Cr, Ni, Cu, Zn, Cd i Pb.

Prilog 4. nastavak

Ime	Zn(mg/kg)	CF_Zn	Cd(mg/kg)	CF_Cd	Pb(mg/kg)	CF_Pb
K-HG 1-1	0,75135	Neonečišćeno	10,0	Izrazito	1,384	Umjereno
K-HG1-2	0,85135	Neonečišćeno	51,3	Izrazito	1,120	Umjereno
K-HG1-3	0,79189	Neonečišćeno	30,0	Izrazito	1,264	Umjereno
K-HG2-1	0,77297	Neonečišćeno	22,5	Izrazito	1,000	Umjereno
K-HG2-2	0,76216	Neonečišćeno	18,8	Izrazito	1,248	Umjereno
K-HG2-3	0,84054	Neonečišćeno	26,3	Izrazito	1,424	Umjereno
K-HG3-1	0,87297	Neonečišćeno	35,0	Izrazito	1,256	Umjereno
K-HG3-2	0,71081	Neonečišćeno	37,5	Izrazito	0,936	Neonečišćeno
К-НG3-3	0,95135	Neonečišćeno	18,3	Izrazito	1,368	Umjereno
K-HG4-1	0,88378	Neonečišćeno	13,3	Izrazito	1,216	Umjereno
K-HG4-2	0,89189	Neonečišćeno	30,0	Izrazito	0,712	Neonečišćeno
K-HG4-3	0,99459	Neonečišćeno	18,0	Izrazito	0,984	Neonečišćeno
K-HG4-4	0,89189	Neonečišćeno	15,0	Izrazito	1,304	Umjereno
K-HG4-5	0,75946	Neonečišćeno	31,7	Izrazito	1,136	Umjereno
K-HG5-1	1,15946	Umjereno	52,5	Izrazito	1,072	Umjereno
K-HG5-2	0,81892	Neonečišćeno	28,3	Izrazito	0,992	Neonečišćeno
K-HG5-3	0,81081	Neonečišćeno	11,7	Izrazito	1,344	Umjereno
K-HG5-4	1,03514	Umjereno	20,0	Izrazito	1,288	Umjereno
K-HG5-5	0,80270	Neonecisceno	35,0	Izrazito	1,248	Umjereno
K-HG5-6	0,71892	Neonecisceno	23,3	Izrazito	1,168	Umjereno
K-HG5-/	0,65946	Neonecisceno	15,0	Izrazito	0,856	Neonecisceno
K-HG0-1	1,14865	Umjereno	30,0	Izrazito	0,984	Neonecisceno
К-ПС0-2	0,77297	Neonecisceno	35,0	Izrazito	0,960	Umierono
K-HG0-5	0,93070	Neonečišćeno	18.2	Izrazito	1,272	Umjereno
K HC6 5	0,81331	Neonečišćeno	18,5	Izrazito	0.816	Neonečišćeno
K-HC6-6	0,57838	Neonečišćeno	7,5	Značajno	0,810	Neonečišćeno
K-HG7-1	1 14324	Umiereno	40.0	Izrazito	1 176	Umiereno
K-HG7-2	0 56757	Neonečišćeno	27.5	Izrazito	0.712	Neonečišćeno
K-HG7-3	0.82973	Neonečišćeno	20.0	Izrazito	1 064	Umiereno
K-HG7-4	1.08649	Umiereno	28,8	Izrazito	1,360	Umiereno
К-НG7-5	0.49189	Neonečišćeno	0.0	Neonečišćeno	0.760	Neonečišćeno
K-HG7-6	0,79189	Neonečišćeno	23,3	Izrazito	1,096	Umjereno
K-HG8-1	0,90811	Neonečišćeno	18,8	Izrazito	1,040	Umjereno
K-HG8-2	0,72162	Neonečišćeno	0,0	Neonečišćeno	0,808	Neonečišćeno
K-HG8-3	0,88378	Neonečišćeno	28,8	Izrazito	0,944	Neonečišćeno
K-HG8-4	0,87838	Neonečišćeno	21,3	Izrazito	0,896	Neonečišćeno
K-HG8-5	0,81081	Neonečišćeno	28,3	Izrazito	0,712	Neonečišćeno
K-HG8-6	0,52973	Neonečišćeno	10,0	Izrazito	0,688	Neonečišćeno
K-HG 9-1	1,51892	Umjereno	53,0	Izrazito	1,208	Umjereno
K-HG 9-2	0,74324	Neonečišćeno	18,0	Izrazito	1,120	Umjereno
K-HG 9-3	0,76216	Neonečišćeno	25,0	Izrazito	1,072	Umjereno
K-HG 9-4	1,08919	Umjereno	74,0	Izrazito	0,000	Neonečišćeno
K-HG 9-5	0,48919	Neonečišćeno	8,0	Izrazito	0,608	Neonečišćeno
K-HG 9-6	1,00541	Umjereno	64,0	Izrazito	0,000	Neonečišćeno
K-HG 10-1	0,84865	Neonečišćeno	17,0	Izrazito	0,896	Neonečišćeno
K-HG 10-2	0,77568	Neonecisceno	20,0	Izrazito	1,072	Umjereno
K-HG 10-3	0,90541	Neonecisceno	12,0		0,960	Inconecisceno
K-HG 10-4	0,63243	Neonecisceno	4,0		1,/04	Umjereno Naonačižćana
K-HG 10-5	0,70270	Neonecisceno	9,0	IZFAZILO	0,888	Imigran
K-HC 11 2	1 01091	Imiereno		Izrazito	1,090	Neonečišácno
K-HC 11 2	0.61802	Neonečišćeno	29,0	Izrazito	0,732	Neonečišćeno
K-HG 11-3	0,01092	Neonečišćeno	23,0	Značajno	0,720	Neonečišćeno
K-HG 11-5	0.82162	Neonečišćeno	12.0	Izrazito	0,010	Neonečišćeno
	1 1 1 2 0 2 0	Umiereno	75	Izrazito	0.632	Neonečišćeno

Sveučilište u Zagrebu Rudarsko–geološko–naftni fakultet

Upotreba različitih geokemijskih faktora s ciljem razlikovanja geogenih od antropogenih izvora potencijalno toksičnih elemenata u tlu Podravine

Niko Radonić, univ.bacc.geol.

Sažetak: Predmet istraživanja ovog rada je poljoprivredno tlo na području lokaliteta Kalinovac (Podravina). Ciljevi rada su: odrediti koncentracije i distribucije potencijalno toksičnih elemenata (PTE) u tlu, razlikovati antropogeni od geogenog izvora PTE te utvrditi korelaciju između analiziranih PTE u tlu. Kako bi se ostvarili svi zadani ciljevi, provedena je geokemijska analiza tla na istraživanom području. Pomoću dobivenih koncentracija su izračunati: faktor obogaćenja (EF), faktor onečišćenja (CF) i indeks geoakumulacije (Igeo). Provedena je i statistička obrada podataka, uključujući izradu korelacijske matrice te hijerarhijske klaster analize (HCA) i analize glavnih komponenti (PCA) korištenjem programa Statistica 13.5. Osim navedenih metoda, pomoću GIS alata kreirane su karte prostorne distribucije koncentracije analiziranih PTE-a, faktora obogaćenja (EF), faktora onečišćenja (CF) i indeksa geoakumulacije (Igeo). Dobiveni rezultati upućuju da su pojedini elementi, poput olova, bakra i kadmija pretežito antropogenog podrijetla.

Ključne riječi: PTE, statistika, faktori obogaćenja, prostorna distribucija. Rad sadrži: 55 stranica, 16 slika, 6 tablica, 4 priloga i 45 referenci.

University of Zagreb

Faculty of Mining, Geology and Petroleum Engineering

Geochemical factors as a tool for distinguishing geogenic from anthropogenic sources of potentially toxic elements in the soil (Podravina)

Niko Radonić, univ.bacc.geol.

Summary: The subject of this study is agricultural soil in the Kalinovac (Podravina). The goals of the study are to determine the concentration and distribution of potentially toxic elements (PTE) in soil, to distinguish geogenic from anthropogenic PTE sources and to determine the correlation between analysed PTEs in soil. To achieve these goals, geochemical analysis was conducted on soil in investigated area. Using the obtained concentrations, the following were calculated: enrichment factor (EF), contamination factor (CF) and geoaccumulation index (Igeo). Statistical data processing was also carried out, including calculation of correlation matrix, as well as hierarchical cluster analysis (HCA) and principal component analysis (PCA) using Statistica 13.5 software. In addition to the statistical methods, GIS tools were used to create maps of the spatial distribution of individual PTEs contents, enrichment factors (EF), pollution factors (CF) and geoaccumulation indexes (Igeo). The obtained results indicate that certain elements, such as lead, copper and cadmium, are predominantly of anthropogenic origin.

Keywords: PTE, statistics, enrichment factors, spatial distribution

The paper contains: 55 pages, 16 figures, 6 tables, 4 appendices and 45 references.

Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet HR-10002 Zagreb Pierottijeva 6, p.p. 390

KLASA: **URBROJ:** Zagreb, 28.4.2023.

Fakultetsko vijeće

Članovi Povjerenstva za ocjenu radova za Rektorovu nagradu u akademskoj godini 2022./2023.

Predmet: Obrazloženje mentora vezano uz prijavu rada studenta Nike Radonića na Natječaj za dodjelu Rektorove nagrade u akademskoj godini 2022./2023.

Poštovani.

Student Niko Radonić izradio je i prijavio rad pod naslovom "Upotreba različitih geokemijskih faktora s ciljem razlikovanja geogenih od antropogenih izvora potencijalno toksičnih elemenata u tlu Podravine" na natječaj za dodjelu Rektorove nagrade u akademskoj godini 2022./2023. Rad je strukturiran kroz 11 poglavlja napisanih na 55 stranica, uključivši 16 slika, 6 tablica, 4 priloga i 45 referenci. Glavni cilj rada je bio izračunati geokemijske faktore te izraditi karte prostornih raspodjela potencijalno toksičnih metala područja Podravine korištenjem GIS alata. U tu svrhu prikupljeni su uzorci tla u kojima su izmjerene koncentracije potencijalno toksičnih metala upotrebom prijenosnog rendgenskog fluorescirajućeg uređaja (pXRF). Osim Uvoda i ciljeva, rad sadrži detaljan opis izračuna geokemijskih faktora pojedinih potencijalno toksičnih metala. Uz detaljan opis spomenutih izračuna, naveden je i opis statističkih analiza napravljen upotrebom programa Statistica. Rezultati rada podijeljeni su u sedam potpoglavlja.

Napravljena je geokemijska analiza korištenjem pXRF uređaja, te tablični prikaz podataka. Potom su izračunati faktori obogaćenja, onečišćenja i indeks geoakumulacije, što je prikazano tablično u poglavlju. Nastavno na to napravljen je statistički izračun statističkih parametara korelacije pojedinih elemenata korištenjem više statističkih metoda unutar programa Statistica. Završno su izrađene prostorne karte distribucija geokemijskih faktora i koncentracija analiziranih elemenata upotrebom GIS alata. Korištenjem svih navedenih metoda, iz dobivenih rezultata može se jasno razlučiti geogeno od antropogenog izvora onečišćenja s potencijalno toksičnim elementima.

S obzirom na sve navedeno, smatramo da su zadani ciljevi ostvareni te da predmetni rad sadrži elemente znanstvenog i stručnog rada koji će predstavljati temelj budućih istraživanja potencijalno toksičnih metala u tlima u svrhu određivanja njihovog izvora, pogotovo onih koji su vezani uz aluvijalne naslage. Također, vjerujemo da rad sadrži sve potrebne elemente nužne za prijavu na natječaj za Rektorovu nagradu u akademskoj godini 2022./2023. Shodno tome, molimo vas da razmotrite prijavu rada studenta Nike Radonića na predmetni natječaj.

Unaprijed zahvaljujemo. Stanko Ružičić i Tomislav Brenko

Mentor

prof. dr. sc. Stanko Ružičić

Komentor dr. sc. Tomislav Brenko

01/553-5705 (studentska referada), 01/553-5704 (računovodstvo), 01/553-5702 (ured dekana), E-MAIL: dekanat@rgn.hr URL: http://www.rgn.unizg.hr, FAX: 01/483 6053 (dekanat), 01/483 6061 (knjigovodstvo), IBAN: 2823600001101303431, MB: 03207005-000, OIB: 99534693762